• Title/Summary/Keyword: Second order of solution

Search Result 832, Processing Time 0.028 seconds

NONHOMOGENEOUS DIRICHLET PROBLEM FOR ANISOTROPIC DEGENERATE PARABOLIC-HYPERBOLIC EQUATIONS WITH SPATIALLY DEPENDENT SECOND ORDER OPERATOR

  • Wang, Qin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1597-1612
    • /
    • 2016
  • There are fruitful results on degenerate parabolic-hyperbolic equations recently following the idea of $Kru{\check{z}}kov^{\prime}s$ doubling variables device. This paper is devoted to the well-posedness of nonhomogeneous boundary problem for degenerate parabolic-hyperbolic equations with spatially dependent second order operator, which has not caused much attention. The novelty is that we use the boundary flux triple instead of boundary layer to treat this problem.

NOTE ON LOCAL ESTIMATES FOR WEAK SOLUTION OF BOUNDARY VALUE PROBLEM FOR SECOND ORDER PARABOLIC EQUATION

  • Choi, Jongkeun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1123-1148
    • /
    • 2016
  • The aim of this note is to provide detailed proofs for local estimates near the boundary for weak solutions of second order parabolic equations in divergence form with time-dependent measurable coefficients subject to Neumann boundary condition. The corresponding parabolic equations with Dirichlet boundary condition are also considered.

OSCILLATORY BEHAVIOR OF THE SECOND-ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Dong, Wenlei;Ping, Bi
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.111-128
    • /
    • 2001
  • In this paper, we consider the oscillation of the second-order neutral difference equation Δ²(x/sub n/ - px/sub n-r/) + q/sub n/f(x/sub n/ - σ/sub n/) = 0 as well as the oscillatory behavior of the corresponding ordinary difference equation Δ²z/sub n/ + q/sub n/f(R(n,λ)z/sub n/) = 0

HAMILTONIAN OF A SECOND ORDER TWO-LAYER EARTH MODEL

  • Selim, H.H.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.49-60
    • /
    • 2007
  • This paper deals with the theory for rotational motion of a two-layer Earth model (an inelastic mantle and liquid core) including the dissipation in the mantle-core boundary(CMB) along with tidal effects produced by Moon and Sun. An analytical solution being derived using Hori's perturbation technique at a second order Hamiltonian. Numerical nutation series will be deduced from the theory.

CUBIC SPLINE METHOD FOR SOLVING TWO-POINT BOUNDARY-VALUE PROBLEMS

  • Al Said, Eisa-A.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.759-770
    • /
    • 1998
  • In this paper we use uniform cubic spline polynomials to derive some new consistency relations. These relations are then used to develop a numerical method for computing smooth approxi-mations to the solution and its first second as well as third derivatives for a second order boundary value problem. The proesent method out-performs other collocations finite-difference and splines methods of the same order. numerical illustratiosn are provided to demonstrate the practical use of our method.

AN SDFEM FOR A CONVECTION-DIFFUSION PROBLEM WITH NEUMANN BOUNDARY CONDITION AND DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.31-48
    • /
    • 2010
  • In this article, we consider singularly perturbed Boundary Value Problems(BVPs) for second order Ordinary Differential Equations (ODEs) with Neumann boundary condition and discontinuous source term. A parameter-uniform error bound for the solution is established using the Streamline-Diffusion Finite Element Method (SDFEM) on a piecewise uniform meshes. We prove that the method is almost second order of convergence in the maximum norm, independently of the perturbation parameter. Further we derive superconvergence results for scaled derivatives of solution of the same problem. Numerical results are provided to substantiate the theoretical results.

HIGHER ORDER OPERATOR SPLITTING FOURIER SPECTRAL METHODS FOR THE ALLEN-CAHN EQUATION

  • SHIN, JAEMIN;LEE, HYUN GEUN;LEE, JUNE-YUB
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • The Allen-Cahn equation is solved numerically by operator splitting Fourier spectral methods. The basic idea of the operator splitting method is to decompose the original problem into sub-equations and compose the approximate solution of the original equation using the solutions of the subproblems. The purpose of this paper is to characterize higher order operator splitting schemes and propose several higher order methods. Unlike the first and the second order methods, each of the heat and the free-energy evolution operators has at least one backward evaluation in higher order methods. We investigate the effect of negative time steps on a general form of third order schemes and suggest three third order methods for better stability and accuracy. Two fourth order methods are also presented. The traveling wave solution and a spinodal decomposition problem are used to demonstrate numerical properties and the order of convergence of the proposed methods.

Calculations of 3D Euler Flows around an Isolated Engine/Nacelle (비장착 엔진/나셀 형상에 대한 3차원 Euler 유동 해석)

  • Kim S. M.;Yang S. S.;Lee D. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.51-58
    • /
    • 1997
  • A reliable computational solver has been developed for the analysis of three-dimensional inviscid compressible flows around a nacelle of a high bypass ratio turbofan engine, The numerical algorithm is based on the modified Godunov scheme to allow the second order accuracy for space variables, while keeping the monotone features. Two step time integration is used not only to remove time step limitation but also to provide the second order accuracy in a time variable. The multi-block approach is employed to calculate the complex flow field, using an algebraic, conformal, and elliptic method. The exact solution of Riemann problem is used to define boundary conditions. The accuracy of the developed solver is validated by comparing its results around the isolated nacelle in the cruise flight regime with the solution obtained using a commercial code "RAMPANT. "

  • PDF

Acceleration of the Time-Dependent Radiative Transfer Calculations using Diffusion Approximation

  • Noh, Tae-Wan
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.151-152
    • /
    • 2004
  • An acceleration technique combined with the discrete ordinates method which has been widely used in the solution of neutron transport phenomena is applied to the solution of radiative transfer equation. The self-adjoint form of the second order radiation intensity equation is used to enhance the stability of the solution, and a new linearization method is developed to avoid the nonlinearity of the material temperature equation. This new acceleration method is applied to the well known Marshak wave problem, and the numerical result is compared with that of a non-accelerated calculation

  • PDF

ON GROUND STATE SOLUTIONS FOR SINGULAR QUASILINEAR ELLIPTIC EQUATIONS

  • Yin, Honghui;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.1011-1016
    • /
    • 2011
  • In this paper, our main purpose is to establish the existence of positive bounded entire solutions of second order quasilinear elliptic equation on $R^N$. we obtained the results under different suitable conditions on the locally H$\"{o}$lder continuous nonlinearity f(x, u), we needn't any mono-tonicity condition about the nonlinearity.