• Title/Summary/Keyword: Second Order Statistics

Search Result 515, Processing Time 0.028 seconds

NONDIFFERENTIABLE SECOND ORDER SELF AND SYMMETRIC DUAL MULTIOBJECTIVE PROGRAMS

  • Husain, I.;Ahmed, A.;Masoodi, Mashoob
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.549-561
    • /
    • 2008
  • In this paper, we construct a pair of Wolfe type second order symmetric dual problems, in which each component of the objective function contains support function and is, therefore, nondifferentiable. For this problem, we validate weak, strong and converse duality theorems under bonvexity - boncavity assumptions. A second order self duality theorem is also proved under additional appropriate conditions.

  • PDF

Robust second-order rotatable designs invariably applicable for some lifetime distributions

  • Kim, Jinseog;Das, Rabindra Nath;Singh, Poonam;Lee, Youngjo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.595-610
    • /
    • 2021
  • Recently a few articles have derived robust first-order rotatable and D-optimal designs for the lifetime response having distributions gamma, lognormal, Weibull, exponential assuming errors that are correlated with different correlation structures such as autocorrelated, intra-class, inter-class, tri-diagonal, compound symmetry. Practically, a first-order model is an adequate approximation to the true surface in a small region of the explanatory variables. A second-order model is always appropriate for an unknown region, or if there is any curvature in the system. The current article aims to extend the ideas of these articles for second-order models. Invariant (free of the above four distributions) robust (free of correlation parameter values) second-order rotatable designs have been derived for the intra-class and inter-class correlated error structures. Second-order rotatability conditions have been derived herein assuming the response follows non-normal distribution (any one of the above four distributions) and errors have a general correlated error structure. These conditions are further simplified under intra-class and inter-class correlated error structures, and second-order rotatable designs are developed under these two structures for the response having anyone of the above four distributions. It is derived herein that robust second-order rotatable designs depend on the respective error variance covariance structure but they are independent of the correlation parameter values, as well as the considered four response lifetime distributions.

MIXED TYPE SECOND-ORDER DUALITY WITH SUPPORT FUNCTION

  • Husain, I.;Ahmed, A.;Masoodi, Mashoob
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1381-1395
    • /
    • 2009
  • Mixed type second order dual to the non-differentiable problem containing support functions is formulated and duality theorems are proved under generalized second order convexity conditions. It is pointed out that the mixed type duality results already reported in the literature are the special cases of our results.

  • PDF

Orthogonal Least Square Approach to Nonstationary Source Separation

  • Choi Heeyoul;Choi Seungjin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.41-44
    • /
    • 2002
  • Blind source separation (BSS) is a fundamental problem that is encountered in many practical applications. In most existing methods, stationary sources are considered higher-order statistics is necessary either explicitly or implicitly. But, many natural signals are nonstationary, and it is possible to perform BSS using only second-order statistics. Our method is based on only second order statistics. The algorithms are developed using the gradient descent method in orthogonality constraint and their performance is confirmed by numerical experiments.

  • PDF

SECOND ORDER REGULAR VARIATION AND ITS APPLICATIONS TO RATES OF CONVERGENCE IN EXTREME-VALUE DISTRIBUTION

  • Lin, Fuming;Peng, Zuoxiang;Nadarajah, Saralees
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.75-93
    • /
    • 2008
  • The rate of convergence of the distribution of order statistics to the corresponding extreme-value distribution may be characterized by the uniform and total variation metrics. de Haan and Resnick [4] derived the convergence rate when the second order generalized regularly varying function has second order derivatives. In this paper, based on the properties of the generalized regular variation and the second order generalized variation and characterized by uniform and total variation metrics, the convergence rates of the distribution of the largest order statistic are obtained under weaker conditions.

Slope Rotatability of Second Order Response Surface Regression Models with Correlated Errors

  • Jung, Hyang-Sook;Park, Sung-Hyun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.95-100
    • /
    • 2005
  • In this paper a class of multifactor designs for estimating the slope of second order response surface regression models with correlated errors is considered. General conditions for second order slope rotatability over all directions and also with respect to the maximum directional variance in case of k=2 have been derived assuming errors have a general correlated error structure. And we consider the measures for evaluating slope rotatability with correlated errors similar to in case of uncorrelated error structures.

  • PDF

A MEASURE OF ROBUST ROTATABILITY FOR SECOND ORDER RESPONSE SURFACE DESIGNS

  • Das, Rabindra Nath;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.4
    • /
    • pp.557-578
    • /
    • 2007
  • In Response Surface Methodology (RSM), rotatability is a natural and highly desirable property. For second order general correlated regression model, the concept of robust rotatability was introduced by Das (1997). In this paper a new measure of robust rotatability for second order response surface designs with correlated errors is developed and illustrated with an example. A comparison is made between the newly developed measure with the previously suggested measure by Das (1999).

Blind identification of nonminimum phase FIR systems from second-order statistics and absolute mean (2차 통계값과 절대평균을 이용한 비최소 위상 FIR 시스템의 미상 식별)

  • 박양수;박강민;송익호;김형명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.357-364
    • /
    • 1996
  • This paper presents a new blind identification method of nonminimum phase FIR systems without employing higher-order statistics. It is based on the observation that the absolute mean of a second-order white sequence can measure the higher-order whiteness of the sequence. The proposed method may be a new alternative way to the higher-order statistics approaches. Some computer simulations show that the absolute mean is exactly estimated and the proposed method can overcome the disadvantages of the higher-order statistics approaches.

  • PDF

Speaker Identification Using Higher-Order Statistics In Noisy Environment (고차 통계를 이용한 잡음 환경에서의 화자식별)

  • Shin, Tae-Young;Kim, Gi-Sung;Kwon, Young-Uk;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.25-35
    • /
    • 1997
  • Most of speech analysis methods developed up to date are based on second order statistics, and one of the biggest drawback of these methods is that they show dramatical performance degradation in noisy environments. On the contrary, the methods using higher order statistics(HOS), which has the property of suppressing Gaussian noise, enable robust feature extraction in noisy environments. In this paper we propose a text-independent speaker identification system using higher order statistics and compare its performance with that using the conventional second-order-statistics-based method in both white and colored noise environments. The proposed speaker identification system is based on the vector quantization approach, and employs HOS-based voiced/unvoiced detector in order to extract feature parameters for voiced speech only, which has non-Gaussian distribution and is known to contain most of speaker-specific characteristics. Experimental results using 50 speaker's database show that higher-order-statistics-based method gives a better identificaiton performance than the conventional second-order-statistics-based method in noisy environments.

  • PDF