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ABSTRACT. In this paper, we construct a pair of Wolfe type second
order symmetric dual problems, in which each component of the objective
function contains support function and is, therefore, nondifferentiable. For
this problem, we validate weak, strong and converse duality theorems under
bonvexity — boncavity assumptions. A second order self duality theorem is
also proved under additional appropriate conditions.
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1. Introduction

Following Dorn [7], first order symmetric and self duality results in
mathematical programming have been derived by a number of authors, notably,
Dantzig et al [5] Mond [11], Bazaraa and Goode [1], Mond and Weir [13]. Later
Weir and Mond [16] discussed symmetric duality in multiobjective programming
by using the concept proper efficiency. Chandra and Prasad [3] presented a pair
of multiobjective programming problem by associating a vector valued infinite
game to this pair. Gulati, Husain and Ahmed [8] also established duality results
for multiobjective symmetric dual problem without non-negativity constraints.

The study of second order duality is significant due to the computational
advantage over first order duality as it provides tighter bound for the value of the
objective function when approximations are used {9]. Motivated by Mangasarian
[9], Mond [12] was the first to study Wolfe type second order symmetric duality
bonvexity-boncavity. Subsequently, Bector and Chandra [2] established second
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order symmetric and self duality results for a pair of non-linear programs
under pseudobonvexity-pseudoboncavity condition. Devi [6] formulated a pair
of second order symmetric dual programs and established corresponding duality
results involving 7-bonvex functions and Mishra [10] extended the results of [6]
to multiobjective nonlinear programming.Recently, Suneja et. al {15] presented
a pair of Mond-Weir type multiobjective second order symmetric and self dual
program without non negativity constraint and proved vairous duality results
under bonvexity and pseudobonvexity. In this paper, we construct in the
spirit of Mond and Schechtor [14] a pair of Wolfe type multiobjective second
order symmetric dual programs in which a support function occurs in each
component of in the objective function and hence non-differentiable. We validate
various duality results under pseudobonvexity-pseudoboncavity assumption. A
self duality theorem is also proved. Some special cases are also derived form our
results. The importance of this kind of programs containing vzTBz or a support
function lies in ‘the fact that even though objective function and/or constraint
functions are nonsmooth, a simple representation for the dual may be found.

2. Notations and Pre-requisites
The following conventions for vectors z and y in n-dimensional Euclidian
space R™ will be used: o
| a:-<y<=>a:%-<y¢-, i=1,2,...,n,
clyez; Sy, 1=1,2,...,n,
c<yer; <y, 1=12,...,n, but z#y
z £y is the negation of = < y.

For z,y € R, z < y and £ < y have the usual meaning. Let ¢ be a twice
differentiable from R™ x R™ — R. Then V;¢ and V¢ denote gradient vectors
with respect to z and y, respectively; Vi¢ and V3¢ are respectively, the nxn and

(V%(b) is the m x m matrix obtained

m x m symmetric Hessian matrices.

Oyi | _.
by differentiating the elements of V3¢ with respect to y; and Va(Vi¢(z,y)q)
denotes the matrix whose (3, j)th the element is %(V%q&(x, y)q);, where g € R™.

| - i

Definition 1. Let C be compact convex set in R™. _The support function of C
is defined by s(z|C) = max{z'y : y € C}.

Definition 2. Let Q be a nonempty convex set in R", and let ¢ : Q@ — R be
convex. Then z is called a subgradient of ¢ at £ € @ if |

W(z) > Y (@) + 2T (x —z), forall z€Q. |
A support fﬁnction,'being convex and every where finite, has a subdifferential,

that is, there exist z such that s(y|C) > s(z|C) + z¥(y — z), for all z € C. The
“set of all subdifferential of s(y|C) is given by 9s(z|C) = {z € C : 2Tz = s(z|C)}.
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For a set T', the normal cone to I' at a point z € I is defined by
Nr(z) = {ylyT(z —z) <0, forall z€eT}.
Where C is a compact convex set, y is in N¢(z) if and only if s(y|c) = zly, ie.,
z is the subdifferentiable of s at y.
Consider the following multiobjective program:

(VP) Minimize ¢(z) = (¢1(z), d2(x), ...0r(x))
subject to = € X
where f : R —+ R™ and Xy C R™.

Definition 3. A feasible point Z is said to bé a weak minimum of (VP),if there
does not exist any ¢ € Xg such that ¢(z) < ¢(Z).

Definition 4. A feasible point Z is said to be efficient solution of (VP), if there
does not exist any feasible z such that ¢(z) < ¢(z).

An efficient solution of (VP) is obviously a weak minimum to (VP).

- Definition 5. A feasible point Z is said to be properly efficient solution of (VP),
if it is an efficient solution of (VP) and if there exists a scalar M > 0 such that
for each ¢ and = € X, satisfying ¢;(z) < ¢:(Z), we have

$i(Z) — ¢i(z) < M(¢;(z) — ¢;(Z)),
for some j, satisfying ¢;(z) > ¢;(Z). __
Definition 6. A twice differentiable functions f : R x R™ =+ R is said to be
(i) Bonvex in z, if for all z,q,v € R™ at u € Rm and fixed y

f(z,v) — f(u,v) 2 (z - U)T[fo(u v) + V2f(u,v)q) - 54" V2f(u,v)q
(11) Boncave in y, if for for all y,p,u € R™ at v € R™ and ﬁxed s

J@) - fey) < (0= 4T [V f(@9) + Vi@ 9)p) - 557 V3 (@ y)p

(iii) Skew-symmetric, when both z and y are in R™ and f (:z:,y) —f(y,x), for
all in the domain of f.

3. Second order symmetric multiobjective duality

We have taken the auxiliary vectors p and g same throughout the formulations
of two problems because it seems more natural than different p’s and ¢’s in {15].
In this section, we present a pair of Wolfe type non-differentiable

multiobjective dual programs and validate weak, strong and converse duality
theorems:

Consider the following two programs:
Primal Program:

(SWP):  Minimize F(z,y,2,p) = Fi(z,y,21,p),- .. Fk(z, Y, 2k, D)
subject to
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k
> M(Vafilz,y) — 2 + Vifi(z,y)p) £0 (1)
i=1

zi€D;,i=1,2,...,k | (2)
z >0 I (3)
and
Dual Program: . o |
(SWD) : Minimize G(u,v,w q) Gi(u,v,w1,q),...Gr(u,v,wk,q)
| subject to | o
k
S A(Vifiu,v) —wi+ Vifiwv)g) 20 (5)
.=1 ) .
w; € C;,1=12,...,k | (6)
v<0 | (7)
X —e At | o | 8
where |

i. Fi(z,y,2i,p) = filz,y) + s(z | Ci) —yT 2 - PTV fi(z, y)p.
/7 3 M(Vafi@,y) - 5+ V3fi(eu)p)

ii. Gi(u,v,wi,q) = fi(u,v) — s(v | D;) + uTw; — 3¢ Vifi(u,v)g.
—ul Zk:l i(Vy filu,v) — w; + szi(u v)q), and |

iii. for each i, s(z | C;) and s(v | D;) represent support functlons of compact
convex sets C; and D; in R™ and R™, respectively. )
iv. w = (wy,...,wg) with w; € C;j and z = (z1,...,25) for ea,ch {i =

., k}. |
k
v. AT = {/\ € RF l A= (/\,‘,...Ak),A > 0, Z A = 1};
=1 . - \ o
Theorem 1 (Weak Duality). Let (z,y, A, 2, p) satisfies the constraints of (SWD)
of (u,v, A, w,q) satisfies the constraints of (SWD). If for each i € {1,2,...,k},

fi(-,y) is bonvez at x for fired y and g;(x,-) be boncave aty for fired x for feaszble
(z,y;u,v, A, p,q,2,w,) then F(z,y, z,p) <G(u v,W,q).

Proof. By bonvex1ty of fi(.,y) for fixed y at u, we have.

fi(ma ) ft(u 'U)
< (z—w)T[Vifi(u,v) + Vi fi(u,v)q] — 54" Vifi(u,v)g _':(9)

and by boncavity of fi(z,-) for fixed z at v, we have

fi(xav) - ft(a:’y)
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< (-9 [Vahilzy) + Vifimup - pp Vil e (10)
Multiplying (10) by (=1) and adding the resulting inequality to (9) we obtain
(fi(z,y) - %p 2fi(z,9)p — v {Vafilz,y) + V2filg, y)p}]
(i) = 347 VEfi(u, v)g — uT{V1 fi(u,v) + V3 £ilu,v)g}]

> .’I?T{Vlfz(u 'U) + V2f,(u 'U)Q} = ’UT{ng.;(SL' y) +V fl(m y)p}

or

[filz,y) —y 2 — :,12- TV2fi(z,y)p — yT{Vafi(z,y) - 2 + Vifi(z, y)p}]

1 7 | |
—[fi(u,v) — wTw; - —q V3 fi(u,v)q — u" {V1fi(u,v) + w; + V3 fi(u,v)q}]
> fBT{vlfz(u 'U) + V2fz(u 'U)Q} — 'UT{V2fz(w y) + \%E ft(m y)p}
Multiplying this by A; > 0, i € {1,2...,k} and summing and usmg Z A =1

=1
we have

k |
> A [fz-(w, y) -y zi— lp Vifilz,y)p—y"
i=1

ZA {sz;(-’ﬂ y) —2z;+ V fz(x y)p}]

1=1
k 1
| filw,v) - uTw; - 5" Vi filw,v)g - u”
1=1
S MVl ) + un + V3 filu, v)a)]

=1

k |
> z Z Ai{ V1 fi(u,v) + Vi fi(u,v)q}
i=1 : -

k
~vT Y A{Vafi(z,y) + V3 fi(z,y)q).

=1
Using (1) with (7) and (5) with (3), this inequality becomes
| . 1 |
> Ailfi(m,y) ~ vz — 5p" Vi iz y)p

=1

k
4T Ai{Vafi(z,y) - 2 + V3 fi(z,y)p}]
1=1
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. |
~ 54" Vifi(u,v)g

k
—;)\i[fi(u, v) —ulw 5

k
~uT Z Ai{ V1 fi(u,v) + w; + V3 fi(u,v)gq}]

i=1
k
i=

k
ZA, (% w;) — Z,\,;(sz,r).
i=1

1

Since —s(z | C;) £ —zTw; for w; € C; and —s(v | D;) £ —vTz,i=1,2,...,k,
therefore, this inequality reduces to

k .
Z)‘_i[fs(:v,y)+8(w+6‘) y zz-—-;— Tv . Vs filz,y)p

k
—y7 Y A{Vafi(z,y) — 2 + Vi filz, y)p})
i=1

k
Z Ailfi(u,v) —s(v | D;) + ulw; — %qTV%fi(Ua’U)q

i=1

k
—uT Z Ai{Vifi(u,v) +w; + V%fﬁ(uav)qna

i=1

Le. Z AiFi(z,y,2i,p) 2 ZA Gi(u, v, wi, q) or \TF(z,y,2,p) 2 ATG(u,v,w,q).
=1 i=1
Thus, F(z,y, z,p) < G(u,v,w,q), as we wished. - O

Theorem 2 (Strong duality). Let for each i € {1,2,...k}, fi be thrice

differentiable on R™ x R™. Let (Z,9,\ 2,p) be properly efficient solution of

(SWP); for X < X in (SWP) and assume that
(Ay): the set {V3fi(Z,9),Vife(Z,¥),... Vifi(Z,7),} is linearly independent.
(A3): the set V,(VE(AT £)(Z,9)D) is positz’ve or negative definite.
(A3) the set {szl(:z: y) + w; + ngl(f,g)ﬁ,...,Vka(f,g) + W +
V2£.(Z,7)p} is linearly independent.

Then (Z,§,\,w,§ = 0) is feasible solutien of (SWD) and F(Z,§,2,p) =
G(z,9,w,q)
Moreover, if the hypotheses of Theorem 1 are satisfied for all feasible solution

of (SWP) and (SWD), then (Z, y,,\ w,q) is properly efficient solution for
(SWD)

weak minimum. Hence there exist « € R" with a = (4g,...,a), B € R™,
n € R* and u € R with p = (u1,...ux) and 8 € C;, ¢ = 1,2,...,k such that
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the following Fritz John optimality conditions [4] are satisfied at (Z, 7, A Z,D):

k k :
Y ai(VifiZ,9) +6:) + ) (B - (@'e)§) AiVai fi(Z,§)
i=1 =1
k e - S S
+3 {8~ (") A = Y VA(V3 i 9)p) = 7, (11)
A=1 |
k
Z(ai ~ (@Te)X)T(V2£i(Z,9) - %)
K
+ 2 _AB - (") (5 + DI\ V3 fi(z, 7))
k | . | .
+3_{B- @ 9Pk - SEYVRVEA(@ 9P =0, (12)
A=1 _ . : |
{(B - (aTe)ﬂ)Xi - a;p} V3 fi(Z,7) =0, (13)
B = (@Te)f)T (V2 fi(2,9) — % + V3 [i(Z,9)P) —pi =0, |
i=1,2,...,k, | (19
—o;Y + ()6 - aTe)g)T/\i S ND;‘ (21:)’ 1= 11 27 L ka (15)
k _.
»3TZ)_\£{V2fi(f,ﬂ) -z + V3 fi(Z,§)p} =0, | (16)
1’z =0, ' | (17)
Mu=o, (18)
(O!, ﬂa na /J') ; Oa _: (19)
(o, 8,m,1) # 0. (20)

Since A > 0 and u 2 0, (18) implies x = 0. In view of the assumption (A,), (13)
yields

(JB - (aTe)g)/\i = a;p, 1= 11 2: IO k. (21)
Using (21) in (12) we have
k

Y (ai - (@Te)R){(V2fi(Z,5) — %) + VAf((Z,9)P)}

i=1

k . |
+-;—(ﬂ - (aTe)y)T Z AV (Vi f(z,5)p) = 0. (22)

1=1
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Post multiplying (22) by (8 — (aTe)y) and the using (14) with u; = 0, we obtain

(8 — (o e)y)TZA Va(V3Xif(z, y)P)( ~ (a'e)

i=1

Ql
N
CD

which because of the condition (A;) implies |

(B~ (a"e)y) =0. (23)
Using (23) in (22), we have

D> (o = (@Te)X)(Vafi(2,9) — 2 + V3 £i(2,9)p) = 0.

i=1
This, in view of (Aj3), gives

a; — (aTe)di =0 i=1,2,...,k. | (24)

Ifa; =0,i=1,2,...k, then from (23) and .(11) f-= 0 and n = 0, respectively.
Consequently, we get (a, 8, u,m) = 0, contradicting to (20). Hence a; > 0. Then
from (21) together with (23), we have

p=0. | | (25)
Using (23) and (25) in (11), we have Z ai(V1fi(Z,9) + 6;) = n, which by (24)

implies (aTe) Z Mi(Vifi(z,9) +0; i) =
ThlS with (17) and (19) respectlvely gives

Z Ai(V1fi(Z,9) +6;) = 0, which, because of (19) and (17) along respectively,
ylelds

k
S AWisED e z0 (26)

and

Hz

k
Z (Vi fi(Z,7) + 6;) = 0. | (27)

From (23), we have

§20. ' - (28)
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From (16),(27) and (28), we obtain (Z,9, \,w,§ = 0) = (Z,¥, A, 0,7 = 0) where

0 = (6;,...,6) is feasible for (SWD). From (16) together with (23)
‘o -
97 Y X(Vofilz,9) - 7+ Vifi(z,5)p) =0. - (29)
i=1

From (15) along with (23) and o; > 0, it implies for each i € {1,2,...,k}

§ € Npi(2:) giving §'z; Ss(y| Di). - - (30)

From (16), (27), (29) and (30) along with p = w = ¢, it imp’lies, for each
i €{1,2,...k}, S

£:(2,9) + 5(3|C;) — V5 ~ 5pT V(2. 9)p

=4 Z (V2 £i(#,§) - % + V3fi(2,9)p)

2
k
—2" ) Mi(V2filZ,§) — @i + V1£i(Z,9)d)
1=1 : o
for ea.chie{l,2,...,k}, |
F(z,7,%,P) = Gi(%,5, i, ). | €3V

This implies F(Z,,%,p) = G(Z,§,w:, ). That is, the objective values of
(SWP) and (SWD) and equal.

Now, we shall show the proper efficiency of (z,7,w, A (
exhibiting a contradiction. If is not efficient for (SWD) such that G(Z,9, z, q) <
G1(u,v,w, q), which because of (31) yields. G;(4,v,w,q) 2 i
contradicts to Theorem 1. |

If (z,9,%,p) were improperly efficient solution of (SWD) 5, then for some
feasible (u ,A\,,q) € Z and some i G; (u 9,Wi,q) > Gi(Z,9,%,9) and -

Gi(a,8,:,q) — Gi(%, 9, %,9) > M(G;(8,0,9;,q) ~ C(%,5,%,9)-

For any M > 0 and all j satisfying G;(Z,7, Z;, §) > G;(u,v,w;,q).

This means G;(@, 7, w;,q) — G;(Z,¥, Zi,q) is finite for all 7 #1. Smce /\ > O
foralli € {1,2,...,k}

\:Gi(a,
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ko_ ko | ‘_
Le., ) AGi(a,0,w;, @) > ) \iGi(Z,7, %, q). This along with (31) implies

i=1 i=1

k
ZXiGi(ﬁ f’ W; aQ) > ZA F(x y,Z;,p)

=1 =1

ie.,
i'I‘Gl(ﬁ’a ﬁ) ‘lB, q) > iTITl(:T:a ga 237'-: p.)

This again leads to a contradiction to Theorem 1. Then the theorem fully
validates. o

Theorem 3 (Converse duality). Let for each i € {1,2,...,k}, fi be thrice
differentiable on R® x R"™. Let (Z,¥,Z,w,§) be a proper eﬁ’iczent solution of
(SWD); fiz X = X in (SWP) and assume that

(Cy1): the set {V2fi(Z,9),...V2fe(Z,9),} 1s linearly independent.

(Cz): the matriz Vl(Vz(AT f)(:z: 7)q) is posztwe or negative definite, and

(Cs): the set {V1 f1(Z,§)+ i+ Vi f1(Z,9)q - -, V1 fe(Z, 7)+0e+ V1 fi(Z, §)7}
is linearly independent.

Then (Z,i, A\, z,p = 0) is feasible solution of (SWP) and

F(z,§,) 2,p) = G(@,0,\,,9).
Moreover, if the hypotheses of theorem are satisfied for all fea,s'ib'lle of ( SWP) and
(SWD).Then (Z,9, A, Z,p) is a properly efficient solution of (SWP).

Proof. It follows exactly on the lines of Theorem 2. 0

4. Second order multiobjective self duality

A mathematical program is said to be self dual, if it is formally identical with
its dual, that is, if the dual is recast in the form of the primal. The new program
so retained is the same as the primal. In general the programs (SWP) and
(SWD) are not self dual without an added restriction on f;(z,y) with z € R™
and y € R" fori € {1,2,...,k}. |

We describe (SWP) a,nd (SWD) as the dual programs if the conclusions of
Theorem 2 holds.

Theorem 4 (Self duality). If the kernel fi(x,y) with f; : R® x R® = R for
= 1,2,...,k is skew symmetric and C; = D; for all i € {1,2,...,k}, then
(SWP) is self dual and (Z,§, A, Z,p) is a joint properly efficient solution then so
is (Z,7,\,2,p) and

F(z,§,) %,p) = G(%,§,®,q)
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Proof. Rewriting the dual program in primal form, we have

(SWP-1):  Minimize — G(z,y,w,q)

= (_Gi(:cs y,w, Q), ces Gk(ma y)wkaQ))
Subject to

. | |

=) XV filE,5) +w; + Vifi(2,5)7) S0
t=1

y20

Aent

w; €C;, 1=1,2,...k

where
~G(2,§,%,9) = —fulz,y) + = wi + s(y | D) + q"fof.(m ¥)q
+xTZA (V1fi(&,9) +wi + VI fi(Z,9)3)-
Since each f; is a skew symmetric, V,fi(z,y) = —Vafi(y,z), Vifilz,y) =

Vifi(y,z) for all i € {1,2,...,k}, and k € R™ and y € R™. Hence the
dual program (SWD-1) can be wrltten as -

(SWD-1):  Minimize G(y,z,w,q) = (Gi(y,z,w,q), ... Gr(y; 2, w,q))
Subject to

Z /\1(V2fz(y1 ) +2; + v2fz(y:$)Q) < 0

i=1
y20
z; € C;
Ae At

where

Gi(y,z,w,q) = fi(y,z)+sy|C)+y’ zz-- TVifi(y,z)q

—mTZ)\ (Vafily,2) + 2 + V2 f,(y, z)q)-
i=1

This show that the program (SWP-1) is just the primal program (SWP).

Thus (Z,7, A\, w,7) optimal for (SWP) implies (§,Z,\,w,§) optimal for
(SWD). By an analogous argument, (Z,§, \, @, ) optimal for (SWP) implies
(7, %, A, Z, p) optimal for (SWD). .

If (SWP) and (SWD) are dual program and (%, 7, A, Z, ) is jointly optimal.
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Then
k
0 = 27 M(Vafilz,§) +wi + Vi fi(2,9)d)
i=1 R |
k !
= g7 ) M(Vafi(Z,§) + 2 + V3 £i(Z,9)D)
=1 '
and 5= ¢ =0.
The objective values of the programs (SWP) and (SWD) at (z,7, A, Z, p),
Fi(z,9,z;,p) = Gi(%,¥,w,9) = fi(Z,9),i = 1,2, k. (32)

Since (¥, %, A, Z, p) is also a joint optimal solution, one can similarly show that

k
g7 AT (V1£i(@, ) + Z + V3 £:(3, 2)P)

0 =
1=1
= 7 Z Mi(V2fi(§,5) +w; + VEfi(§,%)q)
and p=g=0.
The objective value of (SWP) and (SWD) at (y,a: AZ p) becomes
Fi(gajazisﬁ) ‘:Gi(g)i}wia(j) =f,'(§,:i§),z'= 1s2)'°'ak° . " (33)

* From (32) and (33), it implies for each i € {1,2,...,k},

Fi(2,9,%,p) = Gi(y,%, z;,p) = fi(%,7) = [i(§,Z) = - [i(Z,9)

Therefore, Fi(Z,y,zi,p) = fi(Z,4) = 0,& = 1,2,...,k. This implies
Fi(iagazaﬁ) = 0. | O
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