• Title/Summary/Keyword: Second Order Elastic Analysis

Search Result 77, Processing Time 0.02 seconds

Limitation of effective length method and codified second-order analysis and design

  • Chan, S.L.;Liu, Y.P.;Zhou, Z.H.
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.181-192
    • /
    • 2005
  • The effective length method for flexural (column) buckling has been used for many decades but its use is somewhat limited in various contemporary design codes to moderately slender structures with elastic critical load factor (${\lambda}_{cr}$) less than 3 to 5. In pace with the use of higher grade steel in recent years, the influence of buckling in axial buckling resistance of a column becomes more important and the over-simplified assumption of effective length factor can lead to an unsafe, an uneconomical or a both unsafe and uneconomical solution when some members are over-designed while key elements are under-designed. Effective length should not normally be taken as the distance between nodes multiplied by an arbitrary factor like 0.85, 1.0, 2.0 etc. Further, the classification of non-sway and sway-sensitive frames makes the conventional design procedure tedious to use and, more importantly, limited to simple regular frames. This paper describes the practical use of second-order analysis with section capacity check allowing for $P-{\delta}$ and $P-{\Delta}$ effects together with member and system imperfections. Most commercial software considers only the $P-{\Delta}$ effect, but not member and frame imperfections nor $P-{\delta}$ effect, and engineers must be very careful in their uses. A verification problem is also given for validation of software for this type of powerful second-order analysis and design. It is a trend for popular and advanced national design codes in using the second-order analysis as a norm for analysis and design of steel structures while linear analysis may only be used in very simple structures.

Finite Element Analysis with Paraxial Boundary Condition (파진행 문제를 위한 Paraxial 경계조건의 유한요소해석)

  • Kim, Hee-Seok;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.475-480
    • /
    • 2007
  • For the propagation of elastic waves in unbounded domains, absorbing boundary conditions at the fictitious numerical boundaries have been proposed. In this paper we focus on both first- and second-order paraxial boundary conditions(PBCs) in the framework of variational approximations which are based on paraxial approximations of the scalar and elastic wave equations- We propose a penalty function method for the treatment of PBCs and apply these into finite element analysis. The numerical verification of the efficiency is carried out through comparing PBCs with Lysmer-Kuhlemeyer' s boundary conditions.

  • PDF

Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions

  • Madani, Hamid;Hosseini, Hadi;Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.889-913
    • /
    • 2016
  • Vibration analysis of embedded functionally graded (FG)-carbon nanotubes (CNT)-reinforced piezoelectric cylindrical shell subjected to uniform and non-uniform temperature distributions are presented. The structure is subjected to an applied voltage in thickness direction which operates in control of vibration behavior of system. The CNT reinforcement is either uniformly distributed or functionally graded (FG) along the thickness direction indicated with FGV, FGO and FGX. Effective properties of nano-composite structure are estimated through Mixture low. The surrounding elastic foundation is simulated with spring and shear constants. The material properties of shell and elastic medium constants are assumed temperature-dependent. The motion equations are derived using Hamilton's principle applying first order shear deformation theory (FSDT). Based on differential cubature (DC) method, the frequency of nano-composite structure is obtained for different boundary conditions. A detailed parametric study is conducted to elucidate the influences of external applied voltage, elastic medium type, temperature distribution type, boundary conditions, volume percent and distribution type of CNT are shown on the frequency of system. In addition, the mode shapes of shell for the first and second modes are presented for different boundary conditions. Numerical results indicate that applying negative voltage yields to higher frequency. In addition, FGX distribution of CNT is better than other considered cases.

System and member reliability of steel frames

  • Zhou, W.;Hong, H.P.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.419-435
    • /
    • 2004
  • The safety level of a structural system designed per code specifications can not be inferred directly from the reliability of members due to the load redistribution and nonlinear inelastic structural behavior. Comparison of the system and member reliability, which is scarce in the literature, is likely to indicate any possible inconsistency of design codes in providing safe and economical designs. Such a comparative study is presented in this study for moment resisting two-dimensional steel frames designed per AISC LRFD Specifications. The member reliability is evaluated using the resistance of the beam-column element and the elastic load effects that indirectly accounts for the second-order effects. The system reliability analysis is evaluated based on the collapse load factor obtained from a second-order inelastic analysis. Comparison of the system and member reliability is presented for several steel frames. Results suggest that the failure probability of the system is about one order of magnitude lower than that of the most critically loaded structural member, and that the difference between the system and member reliability depends on the structural configuration, degree of redundancy, and dead to live load ratio. Results also suggest that the system reliability is less sensitive to initial imperfections of the structure than the member reliability. Therefore, the system aspect should be incorporated in future design codes in order to achieve more reliability consistent designs.

Case Study for Buckling Design of Temporary Bridges using System Buckling Analysis (시스템좌굴 해석법을 이용한 라멘형가교 주요부재의 좌굴설계에 관한 사례 연구)

  • Kyung, Yong Soo;So, Byoung Hoon;Bang, Jin Hwan;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2007
  • Generally, main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges was presented using a 3D system buckling analysis and second-order elastic analysis. Six types of temporary bridges, which can be designed and fabricated in reality, were chosen and the buckling design for them was performed in consideration ofload combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, transition of 3D buckling modes, and effects of second-order analysis were investigated through a case study involving six temporary bridges.

Analysis of Orthotropic Materials with Crack (균열을 내포하는 직방성재료의 해석)

  • 임원균
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.179-184
    • /
    • 2001
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by the use of second order term in the series expansion is important for the accurate determination of crack growth direction.

  • PDF

Discrete Optimum Design of Steel Framed Structures Subjected to Deformed of Panel Zone (패널영역의 변형을 고려한 강뼈대 구조물의 이산화 최적설계)

  • 박순응;박문호;권민호;장준호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.315-327
    • /
    • 2002
  • The main objective of this study is to develop an discrete optimization algorithm of plane steel frames with rigid using second-order-elastic-plastic hinge analysis which is considering panel zone. Conventional analyses of steel frame are usually tarried out without considering the effect of panel zone deformation on frame behavior The validity of this model is established by comparison without panel zone on joint models is analyzed numerically to demonstrate the importance of using realistic models in steel frame analysis. The objective function is taken as Weight of steel frames and the constraints we formulated based on AISC-LRFD(1994). The validity of the developed algorithm we demonstrate by comparing the result with those of SAP2000. The result of the study indicates that the optimal design algorithm considering of panel zone behavior more economic design than simple steel frame design methods.

Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions (분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析))

  • Suk-Yoon,Chang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

Analysis of Inclined Crack Extension in Orthotropic Solids Under Biaxial Loading (2축하중을 받는 직교이방성체내 경사균열진전의 해석)

  • Lim, Won-Kyun;Choi, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.993-1000
    • /
    • 2002
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. In order to develop the capability to fully analyze fracture growth and failure in anisotropic structures, we examined the fundamental problem of mixed mode fracture by carrying out the analysis on orthotropic materials with an inclined crack subject to biaxial loading. Our goal here is to include an additional term in the asymptotic expansion of the crack tip stress field and to show that the direction of crack initiation can be significantly affected by that term. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by horizontal loads and the use of second order term in the series expansion is important f3r the accurate determination of crack growth direction.

Theoretical and experimental studies of unbraced tubular trusses allowing for torsional stiffness

  • Chan, S.L.;Koon, C.M.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.209-222
    • /
    • 2002
  • This paper describes the buckling phenomenon of a tubular truss with unsupported length through a full-scale test and presents a practical computational method for the design of the trusses allowing for the contribution of torsional stiffness against buckling, of which the effect has never been considered previously by others. The current practice for the design of a planar truss has largely been based on the linear elastic approach which cannot allow for the contribution of torsional stiffness and tension members in a structural system against buckling. The over-simplified analytical technique is unable to provide a realistic and an economical design to a structure. In this paper the stability theory is applied to the second-order analysis and design of the structural form, with detailed allowance for the instability and second-order effects in compliance with design code requirements. Finally, the paper demonstrates the application of the proposed method to the stability design of a commonly adopted truss system used in support of glass panels in which lateral bracing members are highly undesirable for economical and aesthetic reasons.