• Title/Summary/Keyword: Seawater pH

Search Result 314, Processing Time 0.031 seconds

Water Quality of Ground Seawater and Trigger Elements for a Cochlodinium polykrikoides Red Tide (Cochlodinium polykrikoides 적조발생에 있어 증식촉진물질의 기원과 지하해수의 수질)

  • Lee, Young-Sik;Kim, Yoon-Bin;Han, Hyung-Gyun
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1079-1085
    • /
    • 2012
  • Ground seawater quality was investigated, and the algal growth potential (AGP) tests were performed along the Tongyeong coast to examine the inflow of materials, which is needed for the red tide species Cochlodinium polykrikoides to grow. The study was conducted to determine the mechanism for C. polykrikoidesred tides. Water temperature, salinity, pH, and dissolved oxygen (DO) ranged from 16.05 to $20.74^{\circ}C$, 18.20 to 32.11 psu, 6.00 to 7.61, and 3.41 to 7.91 mg/L (41.4-96.1%), respectively. No seasonal variation was observed in water temperature. The salinity, pH, and DO saturations at most stations were lower than those of coastal seawater at Tongyeong. The ${NH_4}^+$-N, ${NO_{2+3}}^-$-N, ${PO_4}^{3-}$-P concentrations ranged from 0.43 to 16.00 ${\mu}M$, 1.50 to 132.38 ${\mu}M$, and 1.30 to 6.29 ${\mu}M$, respectively; the values at some stations were much higher than observed in Tongyeong coast seawater. Using seawater from station B, C. polykrikoides grew consistently, with a high growth rate, similar to the red tide in nature. This seawater appeared to contain materials needed by C. polykrikoides to grow. Therefore, C. polykrikoides red tides seem to occur wherever the ground sea water contains materials that are needed for its growth.

The Preparation of Composite Fiber Adsorbents for Separation of Uranium from Seawater by Spinning(1) (방사 방법을 이용한 해수로 부터 우라늄 분리를 위한 복합재료 섬유흡착제의 제조(1))

  • Hwang, Taek-Seong;Hwang, Ui-Hwan;Park, Jeong-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.966-978
    • /
    • 1995
  • Amidoximated composite fiber adsorbents were prepared for separation of uranium from seawater and characterized by various instrumental techniques, such as IR spectroscopy, CHN elemetal analyzer and SEM. The swelling ratios and yields of the AN-TEGMA and AN-TEGMA-DVB copolymers were decreased with an increase in crosslinklng agents, such as DVB and TEGMA composition. The yield of 85-92% and 82-88% of AN-TEGMA and AN-TEGMA-DVB copolymers respectively were found. The porosity was also decreased with increase in crosslinking compositions, and it was found that the AN-TEGMA-DVB porosity copolymers were smaller than the value of AN-TEGMA copolymer. We investigated that the adsorbent with the composite fiber adsorbents were well dispersed on the surface of Its by SEM. The optimum contents of containing adsorbent in the copolymer was 40 weight percent. The capacity of uraniyl ion through the composite fiber adsorbent containing the amidoxime group was miximized a pH level of 8. Also, if was found that the synthesized composite fiber adsorbent was good material, due to a pH level of 8.3 of seawater, for separation of uraniyl ion from seawater.

  • PDF

Effect of Pretreated Seawater Quality on SDI in SWRO Desalination Process (SWRO 해수담수화 공정에서 전처리된 수질조건이 SDI에 미치는 영향)

  • Son, Dong-Min;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.200-205
    • /
    • 2013
  • Pretreatment process is the critical step of RO (Reverse Osmosis) membrane desalination plant in order to prevent RO membrane fouling. The pretreatment as a key component of RO process must be designed to produce a constant and high quality RO feedwater which has low silt density index (SDI). This experiment was conducted to assess parameters affecting SDI value, such as pH, seawater turbidity, temperature, and coagulant dose. The experimental results indicated that the source seawater turbidity did cause little effects on SDI values of filtered water. The 0.45 um hydrophilic membrane was more appropriate than the hydrophobic membrane for measuring SDI. The SDI value was increased with decreasing pH under the condition of below pH 7.0. In addition, the water temperature significantly affected the SDI values, showing higher SDI value with lower water temperature.

Comparison of Quality Characteristics of Salted Muskmelon with Deep Seawater Salt, Sun-dried and Purified Salts (해양심층수염, 천일염 및 정제염을 이용한 참외절임시 품질특성 비교)

  • 이기동;김숙경;김정옥;김미림
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.840-846
    • /
    • 2003
  • Physiochemical and sensory properties of muskmelon pickles were investigated under salting condition using deep seawater salt, sun-dried salt and purified salt. The changes of weight, shrinkage rate salinity and pH of muskmelon during salting time were almost nothing shown. Turbidity of pickle juice was the highest in salt solution using sun-dried salt and was almost nothing shown in deep seawater salt and purified salt. Solid content of pickle juice was higher in pickle juice using sun-dried salt than deep seawater salt and purified salt. The calcium content of muskmelon salted by deep seawater salt and sun-dried salt were increased to 4.3 times and 3.7 times, respectively. Hardness became a little higher on muskmelon using deed seawater salt ann sun dried salt than purified salt. In organoleptic result, color, flavor, taste, texture and overall palatability of muskmelon salted by deep seawater salt became higher in other salt solution (sun-friend salt and purified salt).

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

A Comparative Study on the Use of Seawater and Sea Salt in Nutrient Elimination (영양염제거에서 해수 및 해수염에 관한 비교연구)

  • Cainglet, Annaliza Pabrua;Kim, Woo-Hang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.829-835
    • /
    • 2016
  • An excess in the nutrients such as nitrogen and phosphate leads to a phenomenon called eutrophication. In order to avoid this, numerous methods have been used to remove excess nutrients in the water. In this study, the use of a chemical method was assessed through the formation of magnesium ammonium phosphate. The difference in the removal efficiency of seawater and sea salt solution as primary sources of $Mg^{2+}$ ions and $Ca^{2+}$ ions for the formation of magnesium ammonium phosphate (MAP) and hydroxyapatite (HAP) respectively, were observed, taking into account the changes in pH and concentration. The results showed that seawater removed about 90 % phosphate and less than 50 % ammonia in sewage water condition, whereas the sea salt solution removed almost 90 % phosphate and 70 % ammonia in solution at pH 9 and 10 mM concentration of sea salt which further increases as the optimum ${Mg/PO_4}^{3-}$, ${NH_4}^+$ ratio reaches 2. The difference in the removal efficiency of seawater and sea salt was due to the fact that the set-ups were prepared in different conditions. This study suggests that both seawater and sea salt can be used to remove nutrients from the water. The relatively higher removal of phosphate can be explained by the formation of HAP from free $Ca^{2+}$ ions initially present in seawater and sea salt solution.

Effective Uranyl Binding by a Dihydroxyazobenzene Derivative. Ionization of Uranium-Bound Water

  • 이관표;장보빈;서정훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.814-819
    • /
    • 1996
  • In search of simple host molecules for uranyl ion which form 1: 1-type complexes with high formation constants that can be used either in extraction of uranium from seawater or in catalysis of biologically important organic reactions, the uranophile activities of dihydroxyazobenzene derivative 1 were studied. Uranyl ion and 1 form a 1: 1-type complex with a very large formation constant. The formation constant was measured at pH 7-11.6 by competition experiments with carbonate ion. From the resulting pH dependence, ionization constants of the two aquo ligands coordinated to the uranium of the uranyl complex of 1 were calculated. The ionization constants were also measured by potentiometric titration of the uranyl complex of 1. Based on these results, the pKa values of the two aquo ligands were estimated as 7.1 and 11.0, respectively. At pH 7.5-9.5, therefore, the complex exists mostly as monohydroxo species. Under the conditions of seawater, 1 possesses greater affinity toward uranyl ion compared with other uranophiles such as carbonate ion, calixarene derivatives, or a macrocyclic octacarboxylate. In addition, complexation of 1 with uranyl ion is much faster than that of the calixarene or octacarboxylate uranophiles.

Determination of Trace Metals in Waters by FAAS after Enrichment as Metal-HMDTC Complexes Using Solid Phase Extraction

  • Tokalioglu, Serife;Kartal, Senol;Elci, Latif
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.693-698
    • /
    • 2002
  • A method has been described for the determination of Cu(Ⅱ), Pb(Ⅱ), Ni(Ⅱ), Cd(Ⅱ), Mn(Ⅱ) and Fe(Ⅲ) by flame atomic absorption spectrometry (FAAS) after preconcentration on Amberlite XAD-16 resin, using hexamethyleneammonium-hexamethylenedithiocarbamate (HMA-HMDTC) as a chelating agent, and NH3/NH4Cl buffer solution (pH 9). Influences of various analytical parameters such as pH, concentration of nitric acid, amount of analytes, diverse ions and sample volume were investigated. The relative standard deviation (RSD) and the detection limit (LOD) were found in the range of 0.8-2.9% and 0.006-0.277 ㎍/mL,respectively. Recoveries obtained by the column method were quantitative ( >95%) at optimum conditions.The method was applied to the determination of some metal ions in seawater and wastewater samples. A high preconcentration factor (about 150 for seawater and 75 for wastewater samples) and simplicity are the main advantages of this suggested method.

해수-석탄회 상호작용에 의한 미량원소 용출특성:Batch 실험연구

  • 박성민;김강주;황갑수;김진삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.295-298
    • /
    • 2004
  • It was revealed that leaching of elements were partly inhibited because seawater contains plenty of dissolved ions than fresh water. On the other hands, the low activity coefficient and the formation of complex with chloride and sulfate play roles in enhancing element leachability. However, the pH buffaring capacity of seawater is the most important factor that makes the leaching of elements and its chemical behavior in the seawater system different from those in the fresh water environments. In general, the leaching from the weathered ash was smaller than that from the fresh ash. However, it was revealed that the leaching of Si, Fe, Al, Mn, phosphate, and some other elements were independent of ash weathering. They were dependant only on the pH of the solutions.

  • PDF

On Board Comparison of Total Hydrogen Ion Concentration (pH) and Total Alkalinity Measurements in Seawater (해수의 총수소이온농도(pH)와 총알칼리도 측정방법에 대한 선상 비교 연구)

  • Kang, Dong-Jin;Tishchenko, Pavel Ya;Kahng, Sung-Hyun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.3
    • /
    • pp.205-211
    • /
    • 2011
  • On board comparison of pH and total alkalinity measurement in seawater was carried out during the JES expedition on R/V Roger Revelle in the East Sea using 550 real seawater samples from the surface to the bottom. Spectrophotometry and potentiometry without liquid junction were compared for pH measurement. The pH values of two methods are generally in a good agreement. Spectrophotometry with a pipette provides higher value compare with the potentiometry in the deep layer, where pH values are lower. However, spectrophotometry without a pipette shows same values with potentiometry within their precision range. The pipetting procedure may remove of $CO_2$ in the sample, which causes increase of pH. Potentiometric titration methods using a closed-cell and an open-cell were compared for the total alkalinity measurement. Values from open cell method are smaller by about 5~10 ${\mu}mol\;kg^{-1}$ than those from closed cell method. This may be caused by the bubble formed in the closed cell during the experiment. Although any analytical method compared in this study for the pH or TA measurement can be applied, special attentions should be paid for satisfactory results.