• 제목/요약/키워드: Seawater brine

Search Result 37, Processing Time 0.079 seconds

Hybrid salts precipitation-nanofiltration pretreatment of MSF and RO seawater desalination feed

  • Al-Rawajfeh, Aiman Eid
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.253-266
    • /
    • 2012
  • In this work, the effect of hybrid salts precipitation-nanofiltration (SP-NF) process on the scale deposits in thermal and membrane desalination processes has been studied. The analysis was carried out to study the scale formation from the Arabian Gulf seawater in MSF and RO reference processes by changing the percentage of pretreatment from 0 to 100%. Four different SP-NF configurations were suggested. A targeted Top Brine Temperature (TBT) of $130^{\circ}C$ may be achieved if 30% portion is pretreated by SP and/or NF processes. As a rule of thumb, each 1% pretreatment portion increases the reference TBT of $115^{\circ}C$ by $0.6^{\circ}C$. For both MSF and RO, parallel pretreatment of certain percentage of the feed by SP and the rest by NF, showed the lowest scale values. The case showed the best values for sulfate scale prevention and the highest values of increasing the monovalent ions relative to the divalent scale forming ions. Sulfate scale is significant in MSF process while carbonate scale is significant in RO. Salt precipitation was suggested because it is less costly than nanofiltration, but nanofiltration was used here because it is efficient in sulfate ions removal.

Characteristic of Precipitated Metal Carbonate for Carbon Dioxide Conversion Using Various Concentrations of Simulated Seawater Solution (해수 농축수 내 금속 이온 농도에 따른 이산화탄소 전환 생성물의 특성연구)

  • Choi, Eunji;Kang, Dongwoo;Yoo, Yunsung;Park, Jinwon;Huh, Il-sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.539-546
    • /
    • 2019
  • Global warming has mentioned as one of the international problems and these researches have conducted. Carbon Capture, Utilization and Storage (CCUS) technology has improved due to increasing importance of reducing emission of carbon dioxide. Among of various CCUS technologies, mineral carbonation can converted $CO_2$ into high-cost materials with low energy. Existing researches has been used ions extracted solid wastes for mineral carbonation but the procedure is complicated. However, the procedure using seawater is simple because it contained high concentration of metal cation. This research is a basic study using seawater-based wastewater for mineral carbonation. 3 M Monoethanolamine (MEA) was used as $CO_2$ absorbent. Making various concentrations of seawater solution, simulated seawater powder was used. Precipitated metal carbonate salts were produced by mixing seawater solutions and $rich-CO_2$ absorbent solution. They were analyzed by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Thermogravimetric Analysis (TGA) and studied characteristic of producing precipitated metal carbonate and possibility of reusing absorbent.

Applicability of Mineral-controled Water from Deep Ocean Water for Industrial Utilization (해양심층수 수질조정수의 산업소재 적용성 평가)

  • Kim H.J.;Moon D.S.;Cho S.Y.;Lee Y.S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.23-28
    • /
    • 2004
  • Various merchandises have appeared in recent markets of mineral water, beverage, food and cosmetics etc. These are almost manufactured by adding raw seawater, desalinated water, brine or salt from Deep Ocean Water(DOW), and it intimated desalination and mineral extraction are key techniques for DOW business. This study aims to verify the functional performance of mineral-controlled water produced by the basic methods which were proposed by authors for industrial purposes. This water revealed the possibility of the radical scavenging effects and moisturizing capability.

  • PDF

Evaluation of Reverse Electrodialysis System with Various Compositions of Natural Resources (다양한 농도 공급원의 조합을 통한 역전기투석 장치의 성능 평가)

  • Kwon, Kilsung;Park, Byung Ho;Kim, Dukhan;Kim, Daejoong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.513-518
    • /
    • 2015
  • Salinity gradient power (SGP) has attracted significant attention because of its high potential. In this study, we evaluate reverse electrodialysis (RED) with various compositions of available resources. The polarization curve (I-V characteristics) shows linear behavior, and therefore the power density curve has a parabolic shape. We measure the power density with varying compartment thicknesses and inlet flow rates. The gross power density increases with decreasing compartment thickness and increasing flow rate. The net power density, which is the gross power density minus the pumping power, has a maximum value at a compartment thickness of 0.2 mm and an inlet flow rate of 22.5 mL/min. The power density in RED is also evaluated with compositions of desalination brines, seawater, river water, wastewater, and brackish water. A maximum power density of $1.75W/m^2$ is obtained when brine discharged from forward osmosis (FO) and river water are used as the concentrated and the diluted solutions, respectively.

Scale formation on vacuum membrane distillation for SWRO brine treatment (진공 막증류 공정의 스케일 막오염 형성에 관한 연구)

  • Hwang, Tae-Mun;Jang, Eun-Kyung;Nam, Sook-Hyun;Koo, Jae-Wuk;Kim, Eun-Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.311-319
    • /
    • 2017
  • Scale formation is inevitable problem when seawater is treated by vacuum membrane distillation. The reason is the high concentration of calcium ion($Ca^{2+}$), sulfate ion(${SO_4}^{2-}$) and bicarbonate ion(${HCO_3}^-$). These ions form calcium sulfate($CaSO_4$) and calcium carbonate($CaCO_3$) on the membrane. The scale formed on membrane has to be removed, because the flux can be severely reduced and membrane wetting can be incurred. This study was carried out to investigate scale formation and effectiveness of acid cleaning in vacuum membrane distillation for SWRO brine treatment. It was found that permeate flux gradually declined until volume concentration factor(VCF) reached around 1.55 and membrane wetting started over VCF over 1.6 in the formation of precipitates containing $CaSO_4$ during VMD operation. In contrast, when calcium carbonate formed on membrane, permeate flux was gradually reduced until VCF 3.0. The precipitates containing both $CaSO_4$ and $CaCO_3$ were formed on the membrane surface and in the membrane pore.

Alkali Recovery by Electrodialysis Process: A Review (전기투석 공정에 의한 알칼리 회수: 총설)

  • Sarsenbek Assel;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Electrodialysis (ED) is essential in separating ions through an ion exchange membrane. The disposal of brine generated from seawater desalination is a primary environmental concern, and its recycling through membrane separation technology is highly efficient. Alkali is produced by several chemical industries such as leather, electroplating, dyeing, and smelting, etc. A high concentration of alkali in the waste needs treatment before releasing into the environment as it is highly corrosive and has a chemical oxygen demand (COD) value. The concentration of calcium and magnesium is almost double in brine and is the perfect candidate for carbon dioxide adsorption, a major environmental pollutant. Sodium hydroxide is essential for the metal carbonation process which, is easily produced by the bipolar membrane electrodialysis process. Various strategies are available for its recovery, like reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and ED. This review discusses the ED process by ion exchange membrane for alkali recovery are discussed.

Secondary Concentration Technology of Brine from Membrane Seawater Desalination Process with Electrodialysis (전기투석을 이용한 분리막 담수화 공정 배출 농축수의 이차 농축기술)

  • Moon, Jeong-Ki;Park, Kwang-Seok;Yoo, Yoon-Ki;Yun, Young-Ki
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • This study is about the secondary concentration technology using electrodialysis process for minimum discharge and maximize recovery ratio from seawater desalination by reverse osmosis process. The experimental method adopted the constant voltage driving method and, concentrated/desalination volume capacity ratio changes, voltage changes and electrolyte types. Multi-ion membrane is used, aiming to derive conditions to minimize the TDS concentration of desalination water, to minimize the volumes of secnodary concentraion water and minimizing the power efficiency. The results of this study are as follows. The optimal ratio of concentraion/desalination volume is 1:5, the final TDS concentration of desalinated water is 5.32g/l, the final secnodary concentrated water salinity is 17.07% and electric energy demands of desalinated water is $16.74kWh/m^3$.

Control of redtide microbes with hydrogen peroxide and yellow loess (과산화수소와 황토를 이용한 적조생물의 제어)

  • Seok, Jong-Hyuk;Jun, Se-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.491-497
    • /
    • 2009
  • The purpose of this study is to propose a method of controlling redtide microbes which grow abundantly and form harmful algal bloom in eutrophic waterbody with yellow loess and hydrogen peroxide. In the laboratory test, hydrogen peroxide was applied to single species of C. polykrikoides and multispecies of redtide microbes. The seawater was evaluated by the pre-test analysis including chlorophyll-a, luminance and transmittance. The test results showed that both single and mixed species of redtide microbes could be controlled with the dose of 30mg $H_2O_2/L$. Residual hydrogen peroxide was completely decomposed with the addition of powdered yellow loess at 2g/L~10g/L. However, the decomposition rate of residual hydrogen peroxide for sintered granular yellow loess was relatively low compared to the use of powdered one. With the addition of dissolved oxygen concentration was increased at a rate of 0.013 mg DO/mg $H_2O_2$, which is a little lower than the one predicted theoretically. No evidence for any detrimental effects on Artemia, a type of brine shrimps, was shown up to the concentration of 100mg $H_2O_2/L$.

A Study on Particle and Crystal Size Analysis of Lithium Lanthanum Titanate Powder Depending on Synthesis Methods (Sol-Gel & Solid-State reaction) (분말 합성법(Sol-Gel & Solid-State reaction)에 따른 Lithium Lanthanum Titanate 분말의 입자 및 결정 크기 비교 분석에 관한 연구)

  • Jeungjai Yun;Seung-Hwan Lee;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Bin Lee;Rhokyun Kwak;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.324-331
    • /
    • 2023
  • Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.

Evaluation of Seawater Reverse Osmosis Desalination System with UF and Disk Filter as Pre-Treatment (UF와 디스크필터를 전처리시설로 이용한 역삼투압해수담수설비의 평가)

  • Yang, Keun-Mo;Lim, Dong-Hoon;Kim, Joon Ha;Jung, Hyung-Ho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • In the present study, sea water reverse osmosis desalination system was composed with an ultra-filtration membrane as a pre-treatment. Sea water was induced into the pre-treatment composed with an auto-screen filter and an ultra-filtration membrane. It was proved that the permeate of the pre-treatment was adequate for reverse osmosis desalination system by measuring the $SDI_{15}$ and the turbidity. Feed salinities was changed by mixing the brine and the permeate. Inlet salinities effected the performances of sea water reverse osmosis desalination system in a large amount such as the salt rejection, the recovery ratio, the pressure, the product salinity. Energy consumptions per the ton of the product were almost linearly increased with the inlet salinities.