DOI QR코드

DOI QR Code

Secondary Concentration Technology of Brine from Membrane Seawater Desalination Process with Electrodialysis

전기투석을 이용한 분리막 담수화 공정 배출 농축수의 이차 농축기술

  • Moon, Jeong-Ki (Research Institute of Industrial Science and Technology) ;
  • Park, Kwang-Seok (Research Institute of Industrial Science and Technology) ;
  • Yoo, Yoon-Ki (Research Institute of Industrial Science and Technology) ;
  • Yun, Young-Ki (Research Institute of Industrial Science and Technology)
  • Received : 2013.05.13
  • Accepted : 2013.06.04
  • Published : 2013.07.01

Abstract

This study is about the secondary concentration technology using electrodialysis process for minimum discharge and maximize recovery ratio from seawater desalination by reverse osmosis process. The experimental method adopted the constant voltage driving method and, concentrated/desalination volume capacity ratio changes, voltage changes and electrolyte types. Multi-ion membrane is used, aiming to derive conditions to minimize the TDS concentration of desalination water, to minimize the volumes of secnodary concentraion water and minimizing the power efficiency. The results of this study are as follows. The optimal ratio of concentraion/desalination volume is 1:5, the final TDS concentration of desalinated water is 5.32g/l, the final secnodary concentrated water salinity is 17.07% and electric energy demands of desalinated water is $16.74kWh/m^3$.

역삼투막을 이용한 해수담수화 공정에서 발생되는 농축수의 최소방류 및 회수율 극대화를 위한 공정으로 전기투석을 이용한 농축수의 이차 농축기술 연구를 수행하였다. 실험방법은 정전압운전 방식을 채용하였으며, 농축/탈염조의 용량비율, 전압별 변화 및 전해질을 농축수로 활용시 등에 대한 검토를 수행하였다. 사용한 막은 다가이온막을 채용하였으며, 전력효율을 최소화하며, 농축수의 농도를 극대화 및 탈염수의 농도를 최소화할 수 있는 조건 도출을 목표로 삼았다. 실험결과 농축/탈염조의 비율은 1대 5의 비율이, 전압의 경우 12V로 전해질의 경우 농축수를 이용시에도 효율에는 큰 차이가 발생하지 않았다. 이와 같은 실험조건에서 도출된 최적조건으로는 탈염수의 총용존고형물 농도가 5.32g/l, 이차 농축수의 염도는 17.07%이며 전력량은 탈염수 톤당 16.74kWh로 나타났다.

Keywords

References

  1. Strathmann, H., 2004, "Ion-Exchange Membrane Separation Processes," Elsevier, pp. 305-307.
  2. Gurtler, B. K., Vetter, T. A., Perdue, E. M., Ingall, E., Koprivnjak, J. F. and Pfromm, P. H., 2008, "Combining Reverse Osmosis and Electrical Current Electrodialysis for Improved Recovery of Dissolved Organic Matter from Seawater," Journal of Membrane Science, Vol. 323, No. 2, pp. 328-336. https://doi.org/10.1016/j.memsci.2008.06.025
  3. Lee, H.-j., Lim, W.-S. and Lee, J.-W., 2013, "Improvement of Ethanol Fermentation from Lignocellulosic Hydrolysates by the Removal of Inhibitors," Journal of Industrial and Engineering Chemistry, https://doi.org/10.1016/j.jiec.2013.03.014
  4. Veerman, J., de Jong, R. M., Saakes, M. and Metz, S. J., 2009, "Reverse Electrodialysis: Comparison of Six Commercial Membrane Pairs on the Thermodynamic Efficiency and Power Density," Journal of Membrane Science, Vol. 343, No. 1-2, pp. 7-15. https://doi.org/10.1016/j.memsci.2009.05.047