DOI QR코드

DOI QR Code

A Study on Particle and Crystal Size Analysis of Lithium Lanthanum Titanate Powder Depending on Synthesis Methods (Sol-Gel & Solid-State reaction)

분말 합성법(Sol-Gel & Solid-State reaction)에 따른 Lithium Lanthanum Titanate 분말의 입자 및 결정 크기 비교 분석에 관한 연구

  • Jeungjai Yun (Department of Korea-Russia Innovation Center, Korea Institute of Industrial Technology) ;
  • Seung-Hwan Lee (Department of Korea-Russia Innovation Center, Korea Institute of Industrial Technology) ;
  • So Hyun Baek (Department of Korea-Russia Innovation Center, Korea Institute of Industrial Technology) ;
  • Yongbum Kwon (Department of Korea-Russia Innovation Center, Korea Institute of Industrial Technology) ;
  • Yoseb Song (Department of Korea Institute for Rare Metal, Korea Institute of Industrial Technology) ;
  • Bum Sung Kim (Department of Korea Institute for Rare Metal, Korea Institute of Industrial Technology) ;
  • Bin Lee (Department of Advanced Materials Engineering for Information and Electronics, Kyunghee University) ;
  • Rhokyun Kwak (Department of Mechanical Convergence Engineering, Hanyang University) ;
  • Da-Woon Jeong (Department of Korea-Russia Innovation Center, Korea Institute of Industrial Technology)
  • 윤정재 (한국생산기술연구원 한러혁신센터) ;
  • 이승환 (한국생산기술연구원 한러혁신센터) ;
  • 백소현 (한국생산기술연구원 한러혁신센터) ;
  • 권용범 (한국생산기술연구원 한러혁신센터) ;
  • 송요셉 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김범성 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 이빈 (경희대학교 정보전자신소재공학과) ;
  • 곽노균 (한양대학교 융합기계공학과) ;
  • 정다운 (한국생산기술연구원 한러혁신센터)
  • Received : 2023.06.18
  • Accepted : 2023.08.08
  • Published : 2023.08.28

Abstract

Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 기관주요사업 "4원계 페로브스카이트 구조의 희토류 멤브레인 신조성 및 합성법 개발을 통한 리튬이온 추출 연계기술 선행연구(KITECHJE-23-0008)"의 지원으로 수행한 연구입니다. 또한, 이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. ES-22-0015).

References

  1. P. K. Choubey, M. S. Kim, R. R. Srivastava, J. C. Lee and J. Y. Lee: Miner. Eng., 89 (2016) 119. 
  2. Y. M. Lin, K. C. Klavetter, P. R. Abel, N. C. Davy, J. L. Snider, A. Heller and C. Buddie Mullins: Chem. Commun., 48 (2012) 7268. 
  3. Y. Huang, X. Wu, L. Nie, S. Chen, Z. Sun, Y. He and W. Liu: Solid State Ion., 345 (2020) 115171.  https://doi.org/10.1016/j.ssi.2019.115171
  4. K. Sasaki, R. Hiraka, H. Takahashi and K. S. Mura: Fusion Eng. Des., 170 (2021) 112500. 
  5. S. Yang, F. Zhang, H. Ding, P. He and H. Zhou: Joule, 2 (2018) 1648. 
  6. A. Siekierka, B. Tomaszewska and M. Bryjak: Desalination, 436 (2018) 8. 
  7. J. F. Song, L. D. Nghiem, X. M. Li and T. He: Water Res. Technol., 3 (2017) 593.  https://doi.org/10.1039/C7EW00020K
  8. P. K. Choubey, K. S. Chung, M. S. Kim, J. C. Lee and R. R. Srivastava: Miner. Eng., 110 (2017) 104. 
  9. C. Liu, Y. Li, D. Lin, P. C. Hsu, B. Liu, G. Yan, T. Wu, Y. Cui and S. Chu: Joule, 4 (2020) 1459. 
  10. Z. Li, C. Li, X. Liu, L. Cao, P. Li, R. Wei, X. Li, D. Guo, K.-W. Huang and Z. Lai: Energy Environ. Sci., 14 (2021) 3152. 
  11. Y. Heng, W. Wang, Q. Li, X. Li, M. Dai, C. Yu, Z. Xue, J. Xia, G. Zhou and D. Jiang: J. Electroceram., 47 (2021) 23. 
  12. J. Kim, J. Oh, J. Y. Kim, Y. G. Lee and K. M. Kim: JKES, 22 (2019) 87. 
  13. H. Kawai and J. Kuwano: J. Electrochem. Soc., 141 (1994) L78. 
  14. X. Gao, C. A. J. Fisher, T. Kimura, Y. H. Ikuhara, A. Kuwabara, H. Moriwake, H. Oki, T. Tojigamori, K. Kohama and Y. Ikuhara: J. Mater. Chem. A, 2 (2014) 843. 
  15. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta and M. Wakihara: Solid State Commun., 86 (1993) 689. 
  16. L. Xu, L. Zhang Y. Hu and L. Luo: Nano Energy, 92 (2022) 106758.  https://doi.org/10.1016/j.nanoen.2021.106758
  17. P. Braun, C. Uhlmann, A. Weber, H. Stormer, D. Gerthsen and E. Ivers-Tiffee: J. of Electroceram., 38 (2017) 157. 
  18. Y. I. Kim, S. C. Park, K. H. Shin, I. Y. Kim, K. A. Lee, S. K. Jung and B. Lee: J. Powder Mater., 30 (2023) 22. 
  19. Z. Jiang, S. Wang, X. Chen, W. Yang, X. Yao, X. Hu, Q. Han and H. Wang: Adv. Mater., 32 (2020) 1906221. 
  20. S. Xia, X. Wu, Z. Zhang, Y. Cui and W. Liu: Chem., 5 (2019) 753. 
  21. Z. Zheng, H. Fang, F. Y ang, Z.-K. Liu and Y . Wang: J. Electrochem. Soc., 161 (2014) A473. 
  22. M. Vijayakumar, Y. Inaguma, W. Mashiko, M. P. C. Lopez and C. Bohnke: Chem. Mater., 16 (2004) 2719. 
  23. A. Monshi, M. R. Foroughi and M. R. Monshi: WJNSE., 2 (2012) 154. 
  24. A. R. Symington, M. Molinari, J. A. Dawson, J. M. Statham, J. Purton, P. Canepa and S. C. Parker: J. Mater. Chem. A, 9 (2021) 6487. 
  25. T. Polczyk, W. Zajac, M. Ziabka and K. Swierczek: J. Mater. Sci., 56 (2021) 2435. 
  26. H. Y. Jeong, J. H. Lee and K. F. Hayes: Geochim. Cosmochim. Acta, 72 (2008) 493. 
  27. M. Baumung, F. Schonewald, T. Erichsen, C. A. Volkert and M. Risch: Sustainable Energy Fuels, 3 (2019) 2218.  https://doi.org/10.1039/C8SE00551F
  28. H. T. Le, D. T. Ngo, Y. J. Kim, C. N. Park and C. J. Park: Electrochim. Acta, 248 (2017) 232. 
  29. T. Luo, J. J. Kuo, K. J. Griffith, K. Imasato, O. Cojocaru-Miredin, M. Wuttig and G. J. Snyder: Adv. Funct. Mater., 31 (2021) 2100258. 
  30. H. Geng, J. Lan, A. Mei, Y. Lin and C. W. Nan: Electrochi. Acta, 56 (2011) 3406. 
  31. R. Li, K. Liao, W. Zhou, X. Li, D. Meng, R. Cai and Z. Shao: J. Membr. Sci., 582 (2019) 194. 
  32. R. Inada, K. Kimura, K. Kusakabe, T. Tojo and Y. Sakurai: Solid State Ionics, 261 (2014) 95.  https://doi.org/10.1016/j.ssi.2014.04.005
  33. C. W. Ban and G. M. Choi: Solid State Ionics, 140 (2001) 285. https://doi.org/10.1016/S0167-2738(01)00821-9