• Title/Summary/Keyword: Seawater acclimation

Search Result 19, Processing Time 0.02 seconds

Properties of Semen and Sperm Motility of Black Porgy Acanthopagrus schlegelii Acclimated in Freshwater (담수순화 감성돔 Acanthopagrus schlegelii의 정액특성 및 정자운동성)

  • Jeong, Min- Hwan;Chang, Young-Jin
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.151-158
    • /
    • 2011
  • The comparison of the chemical properties of semen of black porgy Acanthopagrus schlegelii long-term acclimated reared in freshwater (BFW) and seawater (BSW) with sperm activity of salinity and ion composition. The chemical properties of seminal plasma on BFW of the factors that most there was not significant difference in the BSW. However, osmolality in seminal plasma of BFW and BSW was $307.0{\pm}4.6$ and $337.3{\pm}10.1$ mOsm/kg, respectively, where BFW showed significant lower concentration in contrast to BSW. Salinity effect on sperm motility of BFW and BSW in 0 psu solution, no sperm motility was observed, whereas in 10 psu solution, both BFW and BSW sperms showed low motility and short time post sperm activation. However, diluted in 20 and 32 psu solutions, highest motility and long time post sperm activation were observed in BFW and BSW sperm. SAI of BFW and BSW varied in depend on the osmolality regardless of ion kind and it showed the highest value in the similar osmolality of artificial seawater (956 mOsm/kg). Accordingly, even in sperm released from BFW, factors initiating sperm motility are determined by osmolality.

Molecular Cloning of Insulin-like Growth Factor-I (IGF-I) and IGF-II Genes of Marine Medaka (Oryzias dancena) and Their Expression in Response to Abrupt Transfer from Freshwater to Seawater

  • Kang, Yue-Jai;Kim, Ki-Hong
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.3
    • /
    • pp.224-230
    • /
    • 2010
  • Growth hormone (GH) is known as one of the main osmoregulators in euryhaline teleosts during seawater (SW) adaptation. Many of the physiological actions of GH are mediated through insulin-like growth factor-I (IGF-I), and the GH/IGF-I axis is associated with osmoregulation of fish during SW acclimation. However, little information is available on the response of fish IGF-II to hyperosmotic stress. Here we present the first cloned IGF-I and IGF-II cDNAs of marine medaka, Oryzias dancena, and an analysis of the molecular characteristics of the genes. The marine medaka IGF-I cDNA is 1,340 bp long with a 257-bp 5' untranslated region (UTR), a 528 bp 3' UTR, and a 555-bp open reading frame (ORF) encoding a propeptide of 184 amino acid (aa) residues. The full-length marine medaka IGF-II cDNA consists of a 639 bp ORF encoding 212 aa, a 109 bp 5' UTR, and a 416 bp 3' UTR. Homology comparison of the deduced aa sequences with other IGF-Is and IGF-IIs showed that these genes in marine medaka shared high structural homology with orthologs from other teleost as well as mammalian species, suggesting high conservation of IGFs throughout vertebrates. The IGF-I mRNA level increased following transfer of marine medaka from freshwater (FW) to SW, and the expression level was higher than that of the control group, which was maintained in FW. This significantly elevated IGF-I level was maintained throughout the experiment (14 days), suggesting that in marine medaka, IGF-I is deeply involved in the adaptation to abrupt salinity change. In contrast to IGF-I, the increased level of marine medaka IGF-II mRNA was only maintained for a short period, and quickly returned a level similar to that of the control group, suggesting that marine medaka IGF-II might be a gene that responds to acute stress or one that produces a supplemental protein to assist with the osmoregulatory function of IGF-I during an early phase of salinity change.

Gene Expression Profiles of Rainbow Trout Oncorhynchus mykiss after Salinity Challenge (염분 변화에 따른 무지개송어(Oncorhynchus mykiss)의 삼투조절 유전자 발현변화)

  • Choi, Young Kwang;Park, Heum Gi;Kim, Yi Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.676-684
    • /
    • 2021
  • Euryhaline teleost have extraordinary ability to deal with a wide range of salinity changes. To study the seawater adaptability of rainbow trout Oncorhynchus mykiss (body weight 638±54 g, length 38.6±2 cm) to salinity increase fish were transferred from freshwater to 7, 14, 21, 28 and 32 psu and checked for mortality over 5 days. No mortality was observed in 0-32 psu. In fish transferred to 0-32 psu, blood osmolality was maintained within physiological range. The changes of serum enzyme activities (aspartate transaminase, AST and alanine transaminase, ALT) showed no significant level during experimental period. To explore the underlying molecular physiology of gill and kidney responsible for body fluid regulation, we measured mRNA expression of five genes, Na+/K+/2Cl- cotransporter1 (NKCC1), aquaporin3 (AQP3), cystic fibrosis transmembrane conductance regulator (CFTR), glucocorticoid receptor (GR) and growth hormone receptor (GHR) in response to salt stress. Based on our result, rainbow trout could tolerate gradual transfer up to 32 psu for 5 days without mortality under physiological stress. This study suggests to alleviate osmotic stress to fish, a gradually acclimation to increasing salinity is recommended.

Effects of 3,5,3'-Triiodothyronine (T3) on Osmoregulation following Freshwater Acclimation in Starry Flounder (강도다리 Platichthys stellatus 담수 순화시 삼투압 조절에 미치는 갑상선호르몬의 영향)

  • Min, Byung-Hwa;Lim, Han-Kyu;Chang, Young-Jin;Kim, Young-Soo;Myeong, Jeong-In
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.313-320
    • /
    • 2009
  • The aim of this study was to test if 3,5,3'-triiodothyronine (T3) are involved in the osmoregulatory actions in euryhaline starry flounder Platichthys stellatus. We investigated osmoregulatory parameters ($Na^+,\;Cl^-$ and osmolality), blood cortisol and glucose in starry flounder acclimated to seawater (SW, 33 psu) and that were transferred and allowed to acclimate to freshwater (FW, 0 psu). Fish in SW were injected with T3 (5, 10, and $15{\mu}g$/g body weight) or vehicle (0.9% NaCl), and then transferred to FW. They were sampled 3 days after the transfer. With T3 at $10{\mu}g$/g, levels of plasma $Na^+$ and $Cl^-$ were significantly higher than in sham (only saline) and control fish (without hormone and saline). Osmolality was significantly higher after injection with T3 at 10 and $15{\mu}g$/g than in the control. However, T3 at $5{\mu}g$/g had no effect on hyper-osmoregulation. In this study, all dose of T3 induced a significant increases in plasma cortisol without glucose. These results suggest a positive hyper-osmoregulatory role of T3 in starry flounder to hypoosmotic environment, maybe a positive interaction of T3 with cortisol for maintenance of hyper-osmoregulatory ability.

  • PDF

Comparison of Blood Physiology in Juvenile Black Seabream (Acanthopagrus schlegeli) Reared in Converted Freshwater from Seawater and Seawater from Freshwater (해수사육에서 담수사육으로, 담수사육에서 해수사육으로 전환된 감성돔 치어, Acanthopagrus schlegeli의 혈액생리학적 비교)

  • Chang Young Jin;Min Byung Hwa;Chang Hae Jin;Hur Jun Wook
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.595-600
    • /
    • 2002
  • Comparison of blood properties in juvenile black seabream (Acanthopans schlegeli) between transfer from seawater to freshwater (sFW) and transfer from freshwater to seawater (fSW) were investigated for 60 days. Plasma cortisol levels in sFW were significantly increased from 34.2 $\pm$ 28.6 ng/mL at the beginning to 365.6 $\pm$ 136.0 ng/mL at 3 hours, and decreased to the beginning level at 24 hours. However, in fSW, no significant differences in the cortisol levels were recognized throughout experimental period. No significant difference was found in the glucose levels between sFW and fSW. The transfer from seawater to freshwater of juvenile black seabream resulted in reduced $Na^{+}\;and\; Cl^{-}$ concentrations for 24 hours (decreasing from 165.3 $\pm$ 2.5, 146.0$\pm$ 2.2 to 118.3 $\pm$ 12.3, 78.0$\pm$ 7.0 mEq/L, respectively), but these were completely recovered the beginning levels at 30 days. Total protein and AST showed no significant differences between the two rearing conditions, while ALT was markedly elevated at 3 hour in sFW and at 24 hours in fSW. Ht in sFW was increased from 18.5 $\pm$ $0.6\%$ at the beginning to 25.3 $\pm$ $4.0\%$ at 12 hours, and was decreased to the beginning level at 24 hours. Ht, RBC and Hb in fSW were also significantly higher at 12 hours, but recovered to their initial levels at 24 hours. All fish were dead until 50 days in sFW while survival rate in fSW was $85\%$ at the end of experiment.

Food value or Freshwater Rotifer (Brachionus calyciflorus) for Culture of Sweetfish (Plecoglossus altivelis) Larvae (은어 자어 (Plecoglossus altivelis) 사육에 있어서 담수산 rotifer (Brachionus calyciflorus)의 먹이효과)

  • LEE Kyun Woo;PARK Heum Gi;LEE Sang-Min;HAN Hyon Sob;LIM Young Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • This study investigated the possibility of salinity acclimation of freshwater rotifers (Brachionus calyciflorus) as live food for sweetfish (Plecoglossus altivelis) larvae, and also examined the optimal salinity for the growth of sweetfish. Freshwater rotifers cultured in 0 and 4 PSU and seawater rotifers (B. rotundiformis) cultured in 33 PSU were supplied to the larvae with four kinds of enrichment material (condensed freshwater Chlorella, $\omega-yeast,$ baker's yeast, Super Selco) and larval growth at 4 PSU was examined. Growth of the freshwater rotifers positively increased from 0 PSU to 6 PSU, but decreased when over 8 PSU was reached. Growth and survival of the sweet fish larvae reared in 0 PSU were significantly lower than those reared in either 4 PSU or 33 PSU. This indicated that the freshwater rotifers (B. calyciflorus) could be used as live food for sweetfish larvae reared in 4 PSU. The body weight of sweetfish larvae fed on freshwater rotifers enriched with Super Selco was the highest at 0.163 mg, but there was no significant difference in survival and body length of the fish fed with the other enrichment materials. The content of n-3 HUFA of the sweetfish larvae fed on the freshwater rotifers enriched with Super Selco and the condensed freshwater Chlorella was higher than that enriched with $\omega-yeast$ and baker's yeast. These results indicated that B. calyciflorus cultured with the condensed freshwater Chlorella could be used for the sweetfish larvae without enrichment, and the most efficient enrichment material for B. calyciflorus is Super Selco.

Japanese Medaka, Oryzias latipes as a Test Animal for Marine Ecotoxicological Evaluation (해양생태독성평가를 위한 표준시험생물로서의 송사리(Oryzias latipes)에 관한 연구)

  • Park Gyung Soo;Yoon Seong Jin;Lee Seung Min;Kim Ae Hyang;Park Soung Yun;Kang Duk Young
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.3 s.59
    • /
    • pp.293-303
    • /
    • 2005
  • Japanese medaka, Oryzias latipes is widely distributed in the North East Asia including Korea, Japan and east China, and commonly used for freshwater toxicity tests and cytotoxicological studies worldwide. In this study, a series of experiments were conducted to identify the potential of the fish as a standard test species for saltwater toxicity evaluation such as marine receiving waters, ocean-dumped materials and sediment pore waters etc. Hatching, growth and mortality rates of the fish were estimated with the wide ranges of salinity from freshwater to seawater (35 psu). Direct exposure of the fertilized eggs in freshwater to the wide ranges of salinity (from 0 to 35 psu) without pre- acclimation to the saltwater revealed no significant differences in hatching rates by salinities (p =0.24). On the other hand, medaka larvae hatched in freshwater and exposed to saltwater directly showed high mortality at > 25 psu treatment groups (p < 0.0001). However, there was no significant difference in mortality of medaka larvae hatched in 13.8 and 14.2 psu at the wide ranges of salinities ($0\~35$ psu). Growth rates of medaka larvae hatched in the above two salinities showed no differences in body length either from 0 to 35 psu treatment groups (p =0.64 for 13.8 psu group and p=0.32 for 14.2 psu group). The number of gill chloride cell in medaka larvae sharply increased when the larvae were exposed to high salinity. Reference tests with zinc chloride revealed 96h $LC_{50}=8.84(7.19\~10.87)mg\;L^{-1}$ using 7~10 day old medaka larvae. These were comparable or better sensitivity in comparison with the other standard test species such as North American sheepshead minnow Cyprinodon variegatus. Based on the results of these experiments, hatching rates and larvalmortality of medaka must be good toxicity parameters for seawater bioassay and the species seems to be a good standard species for both the freshwater and seawater toxicity test.

Assessment of Sperm Activity of Black Porgy(Acanthopagrus schlegeli) Acclimated in Freshwater on Cryopreservation Condition (담수순화 감성돔(Acanthopagrus schlegeli) 정자의 냉동보존 조건별 활성평가)

  • Jeong, Min-Hwan;Lim, Han-Kyu;Do, Yong-Hyun;Kim, Jong-Hyun;Son, Maeng-Hyun;Chang, Young-Jin
    • Development and Reproduction
    • /
    • v.16 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • Various cryoprotective agents (CPA) were tested to establish the best conditions for the cryopreservation of sperm from black porgy Acanthopagrus schlegeli acclimated and raised in freshwater (BFW). Survival rates of frozen/thawed sperm from BFW were higher in the order of dimethy sulfoxide (DMSO), glycerol, ethylene glycol (EG) and methanol. Sperm motility was higher in the order of glycerol, DMSO, EG and methanol. These effects were the same in thawed sperm from black porgy raised in seawater (BSW). Thus, optimum CPA for sperm cryopreservation of BFW and BSW were DMSO and glycerol where the highest survival rates and sperm motility were found at the concentration of 10%. In particular, the survival rates and motility of thawed sperm from BFW and BSW after cryopreservation using 10% DMSO were better than when cryopreserved using 10% glycerol. On the other hand, for the thawed sperm from both BFW and BSW, the longer the preservation period was, the lower the survival rates and sperm motility were. Notably, the higher the concentration of CPA was, the lower the survival rates and sperm motility were.

Effects of Water Temperature and Salinity on the Oxygen Consumption Rate of Juvenile Spotted Sea Bass, Lateolabrax maculatus (점농어, Lateolabrax maculatus 치어의 산소 소비율에 미치는 수온과 염분의 영향)

  • Oh, Sung-Yong;Shin, Chang Hoon;Jo, Jae-Yoon;Noh, Choong Hwan;Myoung, Jung-Goo;Kim, Jong-Man
    • Korean Journal of Ichthyology
    • /
    • v.18 no.3
    • /
    • pp.202-208
    • /
    • 2006
  • An experiment was conducted to investigate the effects of three water temperatures (15, 20 and $25^{\circ}C$) in combination with three salinities (0, 15 and 30 psu) on the oxygen consumption rate of juvenile spotted sea bass, Lateolabrax maculatus (mean body weight $5.5{\pm}0.3g$). The oxygen consumption rates of L. maculatus were measured in triplicate for 24 hours using a continuous flow-through respirometer. Water temperature resulted in significant differences in the mean oxygen consumption rate of L. maculatus (p<0.001), but salinity and combinations of salinity and water temperature did not have (p>0.05). The oxygen consumption increased with increasing water temperatures in all experimental salinity regimes (p<001). Mean oxygen consumption rates at 15, 20 and $25^{\circ}C$ ranged 328.8~342.3, 433.9~441.0 and 651.5~659.9 mg $O_2\;kg^{-1}\;h^{-1}$, respectively. $Q_{10}$ values did not vary with salinity, bud varied with water temperature. $Q_{10}$ values ranged 1.63~1.75 between 15 and $20^{\circ}C$, 2.24~2.26 between 20 and $25^{\circ}C$, and 1.92~1.98 over the full temperature range. The energy loss by metabolic cost increased with increasing water temperatures in all experimental salinity regimes (p<0.001) Mean energy loss rates at 15, 20 and $25^{\circ}C$ ranged 224.6~233.8, 296.3~301.2 and $444.9{\sim}450.7kJ\;kg^{-1}\;d^{-1}$, respectively. These data suggest that the culture of juvenile spotted sea bass is possible without energy loss by salinity difference in freshwater as well as seawater after salinity acclimation. Thus, this result has an application for culture management and bioenergetic model for growth of this species.