Japanese Medaka, Oryzias latipes as a Test Animal for Marine Ecotoxicological Evaluation

해양생태독성평가를 위한 표준시험생물로서의 송사리(Oryzias latipes)에 관한 연구

  • Park Gyung Soo (West Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Yoon Seong Jin (West Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Lee Seung Min (West Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Kim Ae Hyang (West Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Park Soung Yun (West Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Kang Duk Young (West Sea Fisheries Research Institute, National Fisheries Research and Development Institute)
  • 박경수 (국립수산과학원 서해수산연구소) ;
  • 윤성진 (국립수산과학원 서해수산연구소) ;
  • 이승민 (국립수산과학원 서해수산연구소) ;
  • 김애향 (국립수산과학원 서해수산연구소) ;
  • 박승윤 (국립수산과학원 서해수산연구소) ;
  • 강덕영 (국립수산과학원 서해수산연구소)
  • Published : 2005.09.01

Abstract

Japanese medaka, Oryzias latipes is widely distributed in the North East Asia including Korea, Japan and east China, and commonly used for freshwater toxicity tests and cytotoxicological studies worldwide. In this study, a series of experiments were conducted to identify the potential of the fish as a standard test species for saltwater toxicity evaluation such as marine receiving waters, ocean-dumped materials and sediment pore waters etc. Hatching, growth and mortality rates of the fish were estimated with the wide ranges of salinity from freshwater to seawater (35 psu). Direct exposure of the fertilized eggs in freshwater to the wide ranges of salinity (from 0 to 35 psu) without pre- acclimation to the saltwater revealed no significant differences in hatching rates by salinities (p =0.24). On the other hand, medaka larvae hatched in freshwater and exposed to saltwater directly showed high mortality at > 25 psu treatment groups (p < 0.0001). However, there was no significant difference in mortality of medaka larvae hatched in 13.8 and 14.2 psu at the wide ranges of salinities ($0\~35$ psu). Growth rates of medaka larvae hatched in the above two salinities showed no differences in body length either from 0 to 35 psu treatment groups (p =0.64 for 13.8 psu group and p=0.32 for 14.2 psu group). The number of gill chloride cell in medaka larvae sharply increased when the larvae were exposed to high salinity. Reference tests with zinc chloride revealed 96h $LC_{50}=8.84(7.19\~10.87)mg\;L^{-1}$ using 7~10 day old medaka larvae. These were comparable or better sensitivity in comparison with the other standard test species such as North American sheepshead minnow Cyprinodon variegatus. Based on the results of these experiments, hatching rates and larvalmortality of medaka must be good toxicity parameters for seawater bioassay and the species seems to be a good standard species for both the freshwater and seawater toxicity test.

송사리(Oryzias latipes)는 한국, 일본 및 중국 등을 포함하는 동북아시아에 분포하는 어종으로. 주로 담수계 독성 실험용 표준시험생물로 이용되고 있다. 본 연구는 담수에 주로 분포하는 송사리가 marine receiving water, 공극수 또는 해양투기물질과 같은 해수의 생태독성평가를 위한 표준시험생물로서 가능성을 구명하기 위하여 염분 내성 및 표준독성물질을 이용한 민감도 실험을 수행하였다. 송사리의 염분 내성을 구명하기 위하여 다양한 염분에서 사망률, 성장률 및 부화율 실험을 실시하였다. 담수에서 산란 및 수정이 이루어진 개체를 이용하여 $0\~35$psu 구간에서 부화율 실험을 실시한 결과, 전 염분구간에서 대조구(Opsu)와 유의한 차이를 보이지 않았다(p=0.24). 반면 담수에서 부화된 자어는 염분이 25psu를 초과할 경우 사망률이 급증하였으나, 담수에서 산란, 수정되어 기수에서(13.8및 14.2psu)부화된 자어는 전염분 구간에서 약 $90\%$ 이상 생존하였다. 또한 기수에서 부화된 자어의 성장률(체장) 역시 염분에 따른 차이가 없었다(p=0.64, p=0.32). 염분 별로 노출된 송사리 자어의 아가미 조직의 염세포 출현율을 검경한 결과,고염분에서 염세포 출현이 급증하여 송사리의 염분 적응력은 매우 높은 것으로 사료된다. Zinc chloride를 이용한 표준물질독성실험 결과 송사리 자어의 96시간 $LC_{50}=8.84\;mg\;L^{-1}$로 북미에서 널리 이용되는 Cyprinodon variegatus(Sheepshead minnow)보다 민감한 반응을 보였으며, 타 표준시험생물과도 유사한 민감도를 보였다 따라서 송사리는 생태독성실험에 주로 이용되는 부화율과 자어 사망률을 이용한 해수 생태독성 실험에 매우 유용한 실험생물이며, 담수, 기수 및 해수의 독성실험에 포괄적으로 이용될 수 있는 생태 독성 평가용 실험생물로 판단된다.

Keywords

References

  1. 김영배, 이성규, 김용화, 노정구. 1988. Diazinon과 Carbofuran의 송사리 (Oryzias latipes)와 미꾸리(Misgurnus anguillicaudatus)에 대한 선택적 독성과 Acetylchloinesterase저해. 한국환경농학회지. 7:117-123
  2. 김철기, 김광백, 차의영. 2003. 다층 퍼셉트론을 이용한 유해물질 유입에 따른 송사리의 행동 반응 분석 및 인식. 멀티미디어학회. 6:1062-1069
  3. 박배경, 박석순, 캐런 어스트필드, 키이스 쿠우퍼. 1996. 송사리 알의 초기 발생과정을 이용한 매립지 침출수 독성도 평가. 환경생물. 14:55-61
  4. 신천철, 이성구, 노정구. 1985. 제초제 Butachlor의 송사리에 대한 아급성 독성. 한국환경농학회지. 4:118-125
  5. 엄경숙, 송민영, 정재춘, 정용. 1987. 수은, 납, 카드뮴, 크롬이온이 송사리(Apiochilus latipes)에 미치는 독성에 관한 연구. 한국물환경학회지. 3:53-62
  6. 이성규, 신천철, 노정구. 1987. 농약에 대한 담수산 어류(잉어 : Cyprinus carpio, 송사리 : Oryzias latipes, 일본산 송사리 : Oryzias latipes)의 약제 감수성 비교. 한국환경농학회지. 6:66-72
  7. 최충길, 황영진, 위인선. 1992. 송사리 수정난에 미치는 중금속의 영향. 한국물환경학회지. 8:135-140
  8. 해양수산부. 1998. 해양환경공정시험방법. 해양수산부. 317pp
  9. Bhattacharyya S, PL Klerks and JA Nyman. 2003. Toxicity to freshwater organisms from oil and oil spill chemical treatments in laboratory microcosms. Environ. Pollut. 122:205-215 https://doi.org/10.1016/S0269-7491(02)00294-4
  10. Chen CM and KR Cooper. 1999. Developmental toxicity and EROD induction in the Japanese medaka (Oryzias latipes) treated with dioxin congeners. Bull. Environ. Contam. Toxicol. 63:423-429 https://doi.org/10.1007/s001289900997
  11. Chen CM, SC Yu and MC Liu. 2001. Use of Japanese medaka (Oryzias latipes) and tilapia (Oreochromis mossambicus) in toxicity tests on different industrial effluents in Taiwan. Arch. Environ. Contam. Toxicol. 40:363-370 https://doi.org/10.1007/s002440010184
  12. Darlington PJ Jr. 1957. Zoogeography: the geographical distribution of animals. Reprinted Edition. Krieger Publishing, Florida, USA
  13. EL-Alfy AT, S Grisle and D Schlenk. 2001. Characterization of salinity-enhanced toxicity of aldicarb to Japanese medaka: Sexual and developmental differences. Environ. Toxicol. Chem. 20:2093-2098 https://doi.org/10.1897/1551-5028(2001)020<2093:COSETO>2.0.CO;2
  14. EL-Alfy AT, E Bernache and D Schlenk. 2002. Gender differences in the effect of salinity on aldicarb uptake, elimination, and in vitro metabolism in Japanese medaka, Oryzias latipes. Aquat. Toxicol. 61:225-232 https://doi.org/10.1016/S0166-445X(02)00059-0
  15. Evans DH, PM Permarini and WTW Potts. 1999. Ionic transport in fish gill epithelium. J. Exp. Zool. 283:641-652 https://doi.org/10.1002/(SICI)1097-010X(19990601)283:7<641::AID-JEZ3>3.0.CO;2-W
  16. Foskett JK and C Scheffey. 1982. The chloride cell: definitive identification as the salt-secretory cell in teleosts. Science 215:164-166 https://doi.org/10.1126/science.7053566
  17. Gerhardt A, LJ De Bisthoven, Z Mo, C Wang, M Yang and Z Wang. 2002. Short-term response of Oryzias latipes (Pisces: Adrianichthyidae) and Macrobrachium nipponense (Crustacea: Palaemonidac) to municipal and pharmaceutical waste water in Beijing, China: survival, behaviour, biochemical biomarkers. Chemosphere 47:35-47 https://doi.org/10.1016/S0045-6535(01)00223-5
  18. Hall LW, MC Ziegenfuss, RD Anderson and BL Lewis. 1995. The effect of salinity on the acute toxicity of total and free cadmium to a Chesapeake Bay copepod and fish. Mar. Pollut. Bull. 30:376-384 https://doi.org/10.1016/0025-326X(94)00186-D
  19. Hall LW and RD Anderson. 1995. The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Crit. Rev. Toxieol. 25:281-346 https://doi.org/10.3109/10408449509021613
  20. Haruta K, T Yamashita and S Kawashima. 1991. Changes in arginine vasotocin content in the pituitary of the medaka (Oryzias latipes) during osmotic stress: Gen. Comp. Endocrinol. 83:327-336 https://doi.org/10.1016/0016-6480(91)90137-U
  21. Hiraoka Y and H Okuda. 1983. Characteristics of vertebral abnormalities of medaka as a water pollution indicator. Hiroshima J. Med. Sci. 32:261-266
  22. Hiraoka Y and H Okuda. 1984. A tentative assessment of water pollution by the medaka egg stationing method: aerial application of fenitrothion emulsion. Environ. Res. 34:262-267 https://doi.org/10.1016/0013-9351(84)90094-X
  23. Inoue K and Y Takei. 2002. Diverse adaptability in Oryzias species to high environmental salinity. Zool. Sci. 19:727-734 https://doi.org/10.2108/zsj.19.727
  24. Iwamatsu T. 1994. Stages of normal development in the medaka Oryzias latipes. Zool. Sci. 11:825-839
  25. Kirchen RV and WR West. 1976. The Japanese Medaka. Its Care and Development. Carolina Biological Supply Company, North Carolina
  26. Madsen SS. 1990. Enhanced hypoosmoregulatory response to growth hormone after cortisol treatment in immature rainbow trout, Salmo gairdneri. Fish Physiol. Biochem. 8:271-279 https://doi.org/10.1007/BF00003422
  27. Marty GD, S Wetzlich, JM Nunez, A Craigmill and DE Hinton. 1991. Fish-based biomonitoring to determine toxic characteristics of complex chemical mixture: Documentation of bioremedation at a pesticide disposal site. Aquat. Toxicol. 19:329-340 https://doi.org/10.1016/0166-445X(91)90057-G
  28. Metcalfe TL, CD Metcalfe ER Bennett and GO Haffner. 2000. Distribution of toxic organic contaminants in water and sediments in the Detroit River. J. Great Lakes Res. 26:55-64 https://doi.org/10.1016/S0380-1330(00)70672-1
  29. Miyamoto T, T Machida and S Kawashima. 1986. Influence of environmental salinity on the development of chloride cells of freshwater and brackish-water medaka, Oryzias latipes. Zool. Sci. 3:859-865
  30. Myers GS. 1938. Fresh-water fishes and West Indian zoogeography. Smithsonian Rep. 1937:339-364
  31. Naruse K. 1996. Classification and phylogeny of fishes of the genus Oryzias and its relatives. Fish Biol. J. Medaka. 8:1-9
  32. Naruse K, A Shima, M Matsuda, M Sakaizumi, T Iwamatsu, T Soeroto and B Uwa. 1993. Description and phylogeny of rice fish and their relatives belonging to the suborder Adrianichthyoidei in Sulawesi, Indonesia. Fish Biol. J. Medaka. 5:11-15
  33. Ozato K and Y Wakamatsu. 1994. Developmental genetics of medaka. Devel. Grow. Different. 36:437-443 https://doi.org/10.1111/j.1440-169X.1994.00437.x
  34. Ozato K, K Inoue and Y Wakamatsu. 1989. Transgenic fish: biological and technical problems. Zool. Sci. 6:445-457
  35. Pisam M, A Caroff and A Rambourg. 1987. Two types of chloride cells in the gill epithelium of a freshwater-adapted euryhaline fish: Lebistes reticulatus; their modifications during adaptation to saltwater. Am. J. Anal. 179:40-50 https://doi.org/10.1002/aja.1001790106
  36. Rao SS, CD Metcalfe, TA Neheli and B Schmidt. 1997. Assessing the toxicity of environmental contaminants with early stages of Japanese medaka (Oryzias latipes). Environment Canada National Water Research Institute, Burlington, Ontario, NWRI Contribution no. 97-02
  37. Roberts TR. 1998. Systematic observations on tropical Asian medaka or ricefishes of the genus Oryzias with descriptions offour new species. Ichthyol. Res. 45:213-224 https://doi.org/10.1007/BF02673919
  38. Sakamoto T, T Kozaka, A Takahashi, H Kawauchi and M Ando. 2001. Medaka(Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture 193:347-354 https://doi.org/10.1016/S0044-8486(00)00471-3
  39. Schlenk D and AT EL-Alfy. 1998. Expression of brachial flavin-containing monooxygenase is directly correlated with salinity-induced aldicarb toxicity in the euryhaline fish (Oryzias latipes). Mar. Environ. Res. 46:103-106 https://doi.org/10.1016/S0141-1136(97)00123-2
  40. Shima A and A Shimada. 1994. The Japanese Medaka, Oryzias latipes, as a new model organism for studying environmental germ-cell mutagenesis. Environ. Health Persp. 102. Suppl. 12
  41. Skinner L, A de Peyster and K Schiff. 1999. Developmental effects of urban storm water in medaka (Oryzias latipes) and inland silverside (Menidia beryllina). Arch. Environ. Contam. Toxicol. 37:227-235 https://doi.org/10.1007/s002449900509
  42. Tachikawa M and R Sawamura. 1994. The effect of salinity on pentachlorophenol accumulation and elimination by killifish (Oryzias latipes). Arch. Environ. Contam. Toxicol. 26:304-308
  43. Uchida K, T Kaneko, K Yamauchi and T Hirano. 1996. Morphometrical analysis of chloride cell activity in the gill filaments and lamella and changes in $Na^+, \;K^+$ -ATPase activity during seawater adaptation in chum salmon fry. J. Exp. Zool. 276:193-200 https://doi.org/10.1002/(SICI)1097-010X(19961015)276:3<193::AID-JEZ3>3.0.CO;2-I
  44. USEPA. 1991. Guidelines for Culturing the Japanese medaka, Oryzias latipes. EPA/600/3-91/064. United States Environmental Protection Agency
  45. USEPA. 1993. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA/600/4-90/022F. United States Environmental Protection Agency
  46. Van Der Heijden AJH, PM Verbost, J Eygensteyn, J Li, SE Wendelaar Bonga and G Flik. 1997. Mitochondria-rich cells in gills of tilapia (Oreochromis mossambicus) adapted to fresh water or seawater; quantification by confocal laser scanning microscopy. J. Exp. Biol. 200:55-64
  47. Yamagami K. 1973. Some enzymological properties of a hatching enzyme (chorionase) isolated from the fresh- water teleost, Oryzias latipes. Comp. Biochem. Physiol. 16B:603-616
  48. Yanagishima S and S Mori, 1975. Studies on the variation and adaptation of fishes. I. Adaptation of killifish (Oryzias latipes T&S.) to saline water. 1. Field study. Zool. Mag. 66:351-358
  49. Yasumasu S, K Inohaya, I Iuchi and K Yamagami. 1997. The medaka hatching enzyme: structure, function and gene expression during development. pp.475-495. In Recent Advances in Marine Biotechnology Vol. 1, Endocrinology and Reproduction (Fingerman M, R Nagabhushanam and M Thompson eds.). Oxford and IBH Publishing, New Delhi