• Title/Summary/Keyword: Seasonal dynamic

Search Result 97, Processing Time 0.028 seconds

Seawater N/P ratio of the East Sea (동해 해수의 질소:인의 비)

  • LEE, TONGSUP;RHO, TAE-KEUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.199-205
    • /
    • 2015
  • Nitrogen and phosphorus are the limiting elements for growth of phytoplankton, which is a major primary producer of marine ecosystem. Incidentally the stoichiometry of N/P of ocean waters, measured by the (nitrate + nitrite)/phosphate ratio converges to a constant of 16. This characteristic ratio has been used widely for the understanding the ecosystem dynamics and biogeochemical cycles in the ocean. In the East Sea, several key papers were issued in recent years regarding the climate change and its impact on ecosystem dynamic and biogeochemical cycles using N/P ratio because the East Sea is a "miniature ocean" having her own meridional overturning circulation with the appropriate responding time and excellent accessibility. However, cited N/P values are different by authors that we tried to propose a single representative value by reanalyzing the historical nutrient data. We present N/P of the East Sea as $12.7{\pm}0.1$ for the year 2000. The ratio reveals a remarkable consistency for waters exceeding 300m depth (below the seasonal thermocline). We recommend to use this value in the future studies and hope to minimize confusion for understanding ecosystem response and biogeochemical cycles in relation to future climate change until new N/P value is established from future studies.

A Correction of East Asian Summer Precipitation Simulated by PNU/CME CGCM Using Multiple Linear Regression (다중 선형 회귀를 이용한 PNU/CME CGCM의 동아시아 여름철 강수예측 보정 연구)

  • Hwang, Yoon-Jeong;Ahn, Joong-Bae
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.214-226
    • /
    • 2007
  • Because precipitation is influenced by various atmospheric variables, it is highly nonlinear. Although precipitation predicted by a dynamic model can be corrected by using a nonlinear Artificial Neural Network, this approach has limits such as choices of the initial weight, local minima and the number of neurons, etc. In the present paper, we correct simulated precipitation by using a multiple linear regression (MLR) method, which is simple and widely used. First of all, Ensemble hindcast is conducted by the PNU/CME Coupled General Circulation Model (CGCM) (Park and Ahn, 2004) for the period from April to August in 1979-2005. MLR is applied to precipitation simulated by PNU/CME CGCM for the months of June (lead 2), July (lead 3), August (lead 4) and seasonal mean JJA (from June to August) of the Northeast Asian region including the Korean Peninsula $(110^{\circ}-145^{\circ}E,\;25-55^{\circ}N)$. We build the MLR model using a linear relationship between observed precipitation and the hindcasted results from the PNU/CME CGCM. The predictor variables selected from CGCM are precipitation, 500 hPa vertical velocity, 200 hPa divergence, surface air temperature and others. After performing a leave-oneout cross validation, the results are compared with the PNU/CME CGCM's. The results including Heidke skill scores demonstrate that the MLR corrected results have better forecasts than the direct CGCM result for rainfall.

Dynamic Changes of Dissolved Oxygen during Summer Monsoon (하절기 장마동안 용존산소의 역동적 변화)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.213-221
    • /
    • 2000
  • Seasonal oxygen content and deficit rates were evaluated from 17 sites of Taechung Reservoir during 1993${\sim}$1994. In 1993, river inflows peaked during the monsoon in July${\sim}$August and disrupted thermal stratification and anoxic layers in the headwaters, thereby confining the anoxia to the mid-lake and downlake reach. The volume of anoxic water with < 4 mg/l DO comprised only < 10% of the total lake volume in this period. In contrast, during monsoon 1994, 85% of total lake volume was subject to hypoxic conditions with oxygen concentrations < 30% saturation, resulting in massive fishkills (Hypomesus olidus). Relative areal oxygen deficit (RAOD) was -0.024mg O$_{2}$cm$^{-2}$d$^{-1}$ during monsoon 1993, whereas it rapidly decreased at the rate of 0.080mg O$_{2}$cm$^{-2}$d$^{-1}$ during monsoon 1994. Anoxic factor (AF) showed a same interannual pattern as the RAOD and was greater >50 d in 1994 (76.5 d) than 1993 (21.3 d). Thus, the reservoir showed a river-characteristics (6${\sim}$11 mg/l DO) in 1993 while lacustrine conditions (<4mg/l DO) dominated in 1994. Regression analysis showed that the variation of summer DO was mostly determined (R$^{2}$=0.99, p<0.0001) by inflow. These findings suggest that the primary factor regulating the oxygen content in this system during summer is an intensity of the monsoon rain.

  • PDF

Evaluation of Sejong Base as a Long Term Monitoring Site for Chromophoric Dissolved Organic Matter (CDOM) Variation in the Antarctic Ocean (남극해 유색 용존 유기물질의 장기 변동성 모니터링을 위한 세종 기지의 활용 가능성 평가)

  • Jeon, Mi-Hae;Park, Mi-Ok;Kang, Sung-Ho;Jeon, Misa
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.898-905
    • /
    • 2019
  • As the positive feedback between the absorption of chromophoric dissolved organic matter (CDOM) and acceleration of ice melt can impact the aquatic biota and dynamic heat budget, long-term monitoring of the CDOM variation in the polar ocean is necessary. However, the monitoring of CDOM is not easy because of harsh weather and difficult access, especially in the Antarctic Ocean. Therefore, the purpose of this study was to find a suitable long-term monitoring site for CDOM variation; we selected Maxwell Bay and Marian Cove at Sejong Base and horizontal and vertical distributions of CDOM were measured. After a 72 hr time-series measurement test of the CDOM variation at Sejong Dock and Sejong Cape in Maxwell Bay, Sejong Dock was selected, as it does not haveland discharge effects. The seasonal variation of CDOM was evident and the average CDOM concentration of Maxwell Bay was comparable with the adjacent sea. The CDOM at Sejong Dock from February to November 2010 was the highest in the fall and winter and the lowest during spring and summer. Thus, based on our one-year CDOM data, we suggest that Sejong Dock in Maxwell Bay is suitable for long-term monitoring of CDOM as an indicator of photochemical and biological environmental change and an important factor in determining the heating budget in the Antarctic Ocean.

Seasonal Characteristics of Pore Development and Hydraulic Properties of Surface Soil in Two Forested Watershed (두 산림유역의 표층 토양의 공극 발달과 수리학적 성질의 계절적 특성)

  • Joo, Sung-Hyo;Gwak, Yong-Seok;Kim, Su-Jin;Kim, Joon;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.151-161
    • /
    • 2009
  • Configuration of soil hydraulic property is an essential component to understand the hydrological processes at the hillslope scale. In this study, we investigated temporal variations in pore development and soil hydraulic properties during the period from March to October in 2008. Characteristics for macropore flow and hydraulic conductivity were measured at two hillslopes: one is the hillslope located at the Buprunsa in Sulmachun watershed, and the other is the hillslope located in Gwangneung Research Forest. Vertical fluxes through macropore were measured using a tension infiltrometer at the depth of surface. The saturated hydraulic conductivities in March, June, July and September were relatively high compared to those in May and October. Temporal variations in several soil hydraulic features could be explained by the differences in vegetation activity and soil moisture content determined by antecedent precipitation. Particularly, the features of macropores had a substantial impact on hydraulic conductivity in the forest hillslope. The temporal nonuniformity of the soil hydraulic properties observed in this study manifests the dynamic features of hydrological processes in the hillslope scale and the experimental results will be useful to understand the internal hydrological processes in the mountainous hillslope.

The Effect of the Circuit Exercise and Conventional Exercise on Walking Ability in Chronic Stroke (순환운동과 전통적 운동이 만성 뇌졸중환자의 보행능력에 미치는 효과)

  • Song, Woo-Seok;Park, Min-Chull;Shim, Je-Myung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.2
    • /
    • pp.193-201
    • /
    • 2010
  • Purpose : This study achieved to search the effect of the circuit exercise and conventional exercise on walking ability(walking speed, endurance, dynamic balance, speed, endurance and pedestrian crossing) in chronic stroke. Methods : Since is diagnosed by stroke, to 30 chronic stroke patients who more than 1 year past the 15 circuit exercise group, the 15 conventional exercise group random the circuit exercise group applied circuit exercise 3th 8 weeks each week after neurological treatment because assigning and the conventional exercise group executed round trip walk exercise in parallel bar 3th 8 weeks each week after neurological treatment. The data of 25 patients who complete experimental course were statistically analysed. Results : The results of this dissertation were as following : 1) There were significantly increased after experimental of 10 meter walk test, 6 minutes walk test and Timed "Up and Go" test in circuit exercise group (p<.001). 2) There were significantly increased after experimental of 2, 4 and 6 lane road crossing mobility in Walking circuit exercise group(p<.01). 3) There were significantly differences after experimental of 10 meter walk test, 6 minutes walk test and Timed "Up and Go" test change quantity between circuit exercise group and conventional exercise group(p<.05). 4) There were correlations were found between the TUG test and 2, 4 and 6 lane road (2 lane road; r=.463, p<.01., 4 lane road; r=515, p<.01., 6lane road; r=.710, p<.01), and there were correlations were found between the 10 meter walk test and 6 minutes walk test(r=.595, p<.01), TUG test(r=.662, p<.01) and 6 lane road(r=.527, p<.01). Conclusion : Even if improvement of walk function through training consists in room, transfer of actuality pedestrian crossing is no change outside the room. Because it is much variable of the weather, seasonal factor, temperature, pedestrian number, state of underneath etc. outside the room. Then, in room after direction promotion of walk function to be promotion of walk function in actuality life and need development of connectable training method consider.

Dataset of Long-term Monitoring on the Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (I) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (I))

  • Lee, Chanjoo;Kim, Dong Gu;Ji, Un;Kim, Jisung
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Naeseong Stream is a sand-bed river that flows through the northern area of Gyeongbuk province. It is characterized by dynamic sandy bedforms developed in response to the seasonal hydrological fluctuation and by its unique riverine landscape called "white river." However, changes including construction of Yeongju Dam from 2010 and the extensive vegetation establishment around 2015 occurred along the Naeseong Stream. This paper aims to analyze climate, hydrology, and water quality as factors and to examine the possibility of channel changes accordingly. The second least precipitation during the last 60 years happened in 2015, which led to the lowest peak discharge in 50 years. The sediment characteristics of Naeseong Stream were not significantly different along the upstream and downstream reaches, but it was confirmed that annual minimum water level of the stream decreased continuously regardless of the dam construction. This suggests that intermittent drought and change in water quality are likely to provide favorable conditions for riparian vegetation establishment and the resulting physical changes have affected riverbed degradation. Therefore, it is necessary to conduct diversified monitoring in connection with river vegetation change in order to analyze the causes of river changes.

Analysis of the Characteristics of Biophilic Design in 『Soswaewon 48 Yeong』 (『소쇄원 48영』에 나타난 바이오필릭 디자인 특성분석)

  • Lee, Hyung-Sook;Choi, Mi-Seon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.4
    • /
    • pp.58-66
    • /
    • 2022
  • Biophilic design is an approach that attempts to connect people with nature to promote health, recovery and restoration processes. The purpose of this study was to systematically analyze restorative factors and characteristics of Soswaewon by applying a biophilic design analysis framework. To this end, a biophilic design classification system was established and content analysis and frequency analysis were conducted for 『Soswaewon 48 Young』. the ratio of plant words including bamboo, pine, and plum was the highest, and words related to dynamic water flow or interaction with water as well as various water types such as streams, waterfalls, and ponds were also high. appeared in rank. In addition, multisensory factors, seasonal changes, microclimatic factors, emotional elements that allow people to indirectly experience nature were expressed in various ways. The space layout and circulation provide opportunities to appreciate and experience the rich sensory resources of Soswaewon. In conclusion, this study confirmed the healing and restorative value of Soswaewon from the perspective of biophilic design, and it needs further research on the restorative factors of traditional spaces.

Recent Trends in Blooming Dates of Spring Flowers and the Observed Disturbance in 2014 (최근의 봄꽃 개화 추이와 2014년 개화시기의 혼란)

  • Lee, Ho-Seung;Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.396-402
    • /
    • 2014
  • The spring season in Korea features a dynamic landscape with a variety of flowers such as magnolias, azaleas, forsythias, cherry blossoms and royal azaleas flowering sequentially one after another. However, the narrowing of south-north differences in flowering dates and those among the flower species was observed in 2014, taking a toll on economic and shared communal values of seasonal landscape. This study was carried out to determine whether the 2014 incidence is an outlier or a mega trend in spring phenology. Data on flowering dates of forsythias and cherry blossoms, two typical spring flower species, as observed for the recent 60 years in 6 weather stations of Korea Meteorological Administration (KMA) indicate that the difference spanning the flowering date of forsythias, the flower blooming earlier in spring, and that of cherry blossoms that flower later than forsythias was 30 days at the longest and 14 days on an average in the climatological normal year for the period 1951-1980, comparing with the period 1981-2010 when the difference narrowed to 21 days at the longest and 11 days on an average. The year 2014 in particular saw the gap further narrowing down to 7 days, making it possible to see forsythias and cherry blossoms blooming at the same time in the same location. 'Cherry blossom front' took 20 days in traveling from Busan, the earliest flowering station, to Incheon, the latest flowering station, in the case of the 1951-1980 normal year, while 16 days for the 1981-2010 and 6 days for 2014 were observed. The delay in flowering date of forsythias for each time period was 20, 17, and 12 days, respectively. It is presumed that the recent climate change pattern in the Korean Peninsula as indicated by rapid temperature hikes in late spring contrastive to slow temperature rise in early spring immediately after dormancy release brought forward the flowering date of cherry blossoms which comes later than forsythias which flowers early in spring. Thermal time based heating requirements for flowering of 2 species were estimated by analyzing the 60 year data at the 6 locations and used to predict flowering date in 2014. The root mean square error for the prediction was within 2 days from the observed flowering dates in both species at all 6 locations, showing a feasibility of thermal time as a prognostic tool.

Ecological Characteristics of Periphyton Community in a Small Mountain Stream (Buso) Inflowing Thermal Wastewater Effluent, Korea (온배수가 유입되는 계류 (부소천)에서 부착조류의 생태학적 특성)

  • Jeon, Gyeonghye;Kim, Nan-Young;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.216-237
    • /
    • 2017
  • Thermal effluent of the hot spring has long been a field of interest in the relationship between temperature gradient and freshwater algae in geology, limnology and aquatic ecology throughout the world. On the other hand, many artificial hot springs have been developed in Korea, but the research on them has not been still active. This study was performed every month from December 2015 to September 2016, to elucidate the spatiotemporal effects of thermal wastewater effluent (TWE) on the ecosystem of benthic algal assemblage in four stations(BSU (upstream), HSW (hot spring wastewater outlet), BSD1~2 (downstream)) of the upstream reach of the Buso Stream, a tributary located in the Hantan River basin. During the survey, the influencing distance of temperature on TWE was <1.0 km, and it was the main source of N P nutrients at the same time. The effects of TWE were dominant at low temperature and dry season (December~March), but it was weak at high temperature and wet season (July~September), reflecting some seasonal characteristics. Under these circumstances, the attached algal communities were identified to 59 genera and 143 species. Of these, the major phylum included 21 genera 83 species of diatoms(58.0%), 9 genera 21 species of blue-green algae (14.7%) and 25 genera 32 species of green algae (22.4%), respectively. The spatiotemporal distribution of them was closely related to water temperature ($5^{\circ}C$ and $15^{\circ}C$) and current ($0.2m\;s^{-1}$ and $0.8m\;s^{-1}$). In the basic environment maintaining a high water temperature throughout the year round, the flora favoring high affinity to $PO_4$ in the water body or preferring stream habitat of abundant $NO_3-PO_4$ was dominant. As a result, when compared with the outcomes of previous algal ecology studies conducted in Korea, the Buso Stream was evaluated as a serious polluted state due to persistent excess nutrient supply and high thermal pollution throughout the year round by TWE. It can be regarded as a dynamic ecosystem in which homogeneity (Summer~Autumn) and heterogeneity (Winter~Spring) are repeated between upstream and downstream.