DOI QR코드

DOI QR Code

Seasonal Characteristics of Pore Development and Hydraulic Properties of Surface Soil in Two Forested Watershed

두 산림유역의 표층 토양의 공극 발달과 수리학적 성질의 계절적 특성

  • Joo, Sung-Hyo (Department of Environmental Engineering, Water resource and Environment Laboratory, Pusan National University) ;
  • Gwak, Yong-Seok (Department of Environmental Engineering, Water resource and Environment Laboratory, Pusan National University) ;
  • Kim, Su-Jin (Department of Atmospheric Sciences/Global Environment Laboratory, Yonsei University) ;
  • Kim, Joon (Department of Atmospheric Sciences/Global Environment Laboratory, Yonsei University) ;
  • Kim, Sang-Hyun (Department of Environmental Engineering, Water resource and Environment Laboratory, Pusan National University)
  • 주승효 (부산대학교 환경공학과) ;
  • 곽용석 (부산대학교 환경공학과) ;
  • 김수진 (연세대학교 대기과학과/지구환경연구소) ;
  • 김준 (연세대학교 대기과학과/지구환경연구소) ;
  • 김상현 (부산대학교 환경공학과)
  • Published : 2009.12.30

Abstract

Configuration of soil hydraulic property is an essential component to understand the hydrological processes at the hillslope scale. In this study, we investigated temporal variations in pore development and soil hydraulic properties during the period from March to October in 2008. Characteristics for macropore flow and hydraulic conductivity were measured at two hillslopes: one is the hillslope located at the Buprunsa in Sulmachun watershed, and the other is the hillslope located in Gwangneung Research Forest. Vertical fluxes through macropore were measured using a tension infiltrometer at the depth of surface. The saturated hydraulic conductivities in March, June, July and September were relatively high compared to those in May and October. Temporal variations in several soil hydraulic features could be explained by the differences in vegetation activity and soil moisture content determined by antecedent precipitation. Particularly, the features of macropores had a substantial impact on hydraulic conductivity in the forest hillslope. The temporal nonuniformity of the soil hydraulic properties observed in this study manifests the dynamic features of hydrological processes in the hillslope scale and the experimental results will be useful to understand the internal hydrological processes in the mountainous hillslope.

토양수리특성을 규명하는 것은 사면에서의 수문과정을 이해하는 과정에서 중요한 부분이다. 이 연구에서는 토양공극발달 및 수리학적 특성의 시간적인 변화특성에 대해서 조사하였다. 특히, 대공극 흐름이나 수리전도도와 관련된 특성들을 설마천 유역의 범륜사 사면과 광릉연구유역의 원두부 소사면에서 관측하였다. 연직 흐름의 측정을 위해 사용된 기기는 장력 침투계로 약 8개월동안 토양층 표면의 수리전도도를 측정하였다. 측정된 결과는 3월, 6월, 9월의 수리전도도가 상대적으로 크지만, 5월과 10월의 경우는 낮은 값을 보여준다. 이는 식생의 세근활동 등과 관련된 공극구조의 발달양상과 선행강우사상으로 인한 토양수분의 영향으로 설명될 수 있다. 침투과정에서 있어서 대공극은 산림 유역에서의 수리전도도에 미치는 영향은 대단히 크며, 수문학적 과정에 있어서도 매우 중요한 기작이다. 본 연구는 현장에서 측정된 토양 수리특성의 시간적 불균일성을 보여주는 사례로 사면에서의 침투과정이 동적인 과정임을 보여주고 있고, 관련된 다양한 토양 수리학적 특성들은 국내 산지사면에서 발생되는 수문기작을 이해하는데 중요한 기초 자료가 된다.

Keywords

References

  1. Baird, A. J., 1997: Field estimation of macropore functioning and surface hydraulic conductivity in a fen peat, Hydrological Processes 11, 287-295 https://doi.org/10.1002/(SICI)1099-1085(19970315)11:3<287::AID-HYP443>3.0.CO;2-L
  2. Bodhinayake, W., B. C. Si, and C. Xiao, 2004: New method for determining water-conducting macro-and mesoporosity from tension infiltrometer, Soil Science Society of America Journal 68, 760-769 https://doi.org/10.2136/sssaj2004.7600
  3. Beven, K., and P. Germann, 1982: Macropores and water flow in soil, Water Resource Research 18(5), 1311-1325 https://doi.org/10.1029/WR018i005p01311
  4. Bormann, B., and K. Klaassen, 2008: Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils, Geoderma 145, 295-302 https://doi.org/10.1016/j.geoderma.2008.03.017
  5. Casanova, M., I. Messing, and A. Joel, 2000: Influence of aspect and slope gradient on hydraulic conductivity measured by tension infiltrometer, Hydrological Processes14, 155-164 https://doi.org/10.1002/(SICI)1099-1085(200001)14:1<155::AID-HYP917>3.0.CO;2-J
  6. Gardner, W. R., 1958: Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table, Soil Science 85, 228-232 https://doi.org/10.1097/00010694-195804000-00006
  7. Gupta, S, D., B. P Mohanty, and J. M. Kohne, 2006: soil hydraulic conductivities and their spatial and temporal variations in a vertisol, Soil Science Society of America 70, 1872-1881 https://doi.org/10.2136/sssaj2006.0201
  8. Gwak, Y. S., S. J. Kim, J. Kim, J. H. Lim, and S. Kim, 2007: Spatial distribution of macropore flow percentage and macroporosities in the Gwangneung forest catchment, Korean Journal of Agricultural and Forest meteorology 9(4), 234-246 https://doi.org/10.5532/KJAFM.2007.9.4.234
  9. Horton, R. E., 1933: The role of infiltration in the hydrological cycle, Transactions, American Geophysical Union 14, 446-460 https://doi.org/10.1029/TR014i001p00446
  10. Hussen, A. A., and A. W. Warrick. 1993: Algebraic models for disc tension permeameters, Water Resources Research 29, 2779-2786 https://doi.org/10.1029/93WR00544
  11. Larsson, M. H., 1999: Quantifying macroporeflow effects on nitrate and pesticide leaching in a structed clay soil, field experiments and modelling with the MACRO and SOILN models, Acta Universitatis Agriculturae Sueciae, Agraria 164, 34
  12. Noguchi, S., N. Abdul Rahim, K. Baharuddin, T. Sammori, M. Tani, and K. Morisada, 1997a: Soil physical properties and preferential flow pathways in tropical rain forest, Bukit Tarek, Peninsular Malaysia, Journal of Forest Research 2, 115-120 https://doi.org/10.1007/BF02348479
  13. Noguchi, S., Y. Tsuboyama, R. C. Sidle, and I. Hosoda, 1997b: Spatially distributed morphological characteristics of macropores in forest soils of Hitachi Ohta Experimental Watershed, Japan, Journal of Forest Research 2, 207- 215 https://doi.org/10.1007/BF02348317
  14. Noguchi, S., Y. Tsuboyama, R. C. Sidle, and I. Hosoda,1999: Morphological characteristics of macropores and the distribution of preferential flow pathways in a forested slope segment, Soil Science Society of America Journal 63, 1413-1423 https://doi.org/10.2136/sssaj1999.6351413x
  15. Perret, J. S., S. O. Prasher, A. Kantzas, and C. Langford, 1999: Three-dimensional quantification of macropore networks in undisturbed soil cores, Soil Science Society of America Journal 63, 1530-1543 https://doi.org/10.2136/sssaj1999.6361530x
  16. Sullivan, M., J. J. Warwick, and S. W. Tyler, 1996: Quantifying and delineating spatial variations of surface infiltration in small watershed, Journal of Hydrology 181, 149-168 https://doi.org/10.1016/0022-1694(95)02908-7
  17. Tsukamoto, Y., and T. Ohta, 1988: Runoff process on a steep forest slope, Journal of Hydrology 102, 165-178 https://doi.org/10.1016/0022-1694(88)90096-0
  18. Uchida, T, K. Kosugi, and T. Mizuyama, 2001: Effect of pipeflow on hydrological process and its relation to landslide: a review of pipeflow studies in forested headwater catchments, Hydrological Processes 15, 2151-2174 https://doi.org/10.1002/hyp.281
  19. Vandervaere, J, P., M. Vauclin, and D. E. Elrick, 2000: Transient flow from tension infitlrometers I. The twoparameter equation, Soil Science Society of America Journal 64, 1263-1272 https://doi.org/10.2136/sssaj2000.6441263x
  20. Watson, K. W., and R. J. Luxmoore, 1986: Estimating macroporosity in a forest watershed by use of a tension infiltrometer, Soil Science Society of America Journal, 50, 578-582 https://doi.org/10.2136/sssaj1986.03615995005000030007x
  21. Wilson, G. V., and R. J. Luxmoore, 1988: Infiltration, macroporosity, and mesoporosity distributions on two forested watersheds, Soil Science Society of America Journal 52, 329-335 https://doi.org/10.2136/sssaj1988.03615995005200020005x
  22. Wooding, R. A., 1968: Steady infiltration from a shallow circular pond, Water Resources Research 4, 1259-1273 https://doi.org/10.1029/WR004i006p01259