• Title/Summary/Keyword: Seamcat

Search Result 26, Processing Time 0.02 seconds

A Study on Interference Effect between DTV Service and IMT Service (DTV 서비스와 IMT 서비스간 간섭 영향 연구)

  • Shim, Yong-Sup;Lee, Il-Kyoo;Chang, Sang-Hyun;Cho, In-Kyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.61-68
    • /
    • 2010
  • Korea has made a plan to allocate CH 14~CH 51 (470 MHz~698 MHz) for DTV transition. Therefore, It is a necessary to take account compatibility between DTV service and other potential services. This paper assumes that DTV service operates on CH 51(692 MHz~698 MHz) and IMT service operates on CH 52(698 MHz~704 MHz), and then analyzes compatibility between DTV service and IMT service with Spectrum Engineering Advanced Monte Carlo Analysis Tool(SEAMCAT). The interference probability from IMT service to DTV service and capacity loss of IMT service due to interference from DTV service is studied, respectively. For the simulation, four interference cases in four different scenarios are considered. With considering the depolarization factor, a guard band of 8 MHz is required in the case of between IMT service downlink(DL) and DTV service, in the case of between IMT service uplink(UL) and DTV service, a guard band of 6 MHz is needed for the worst case of urban scenario on consideration of more then 15 dB increase of IMT system base station(BS) receiver blocking level.

Analysis on Characteristics for Sharing Co-channel between Communication Systems (통신 시스템간 채널 공유를 위한 특성 분석)

  • Cho, Ju-Phil;Cho, Sang-In;Kang, Kyu-Min;Hong, Heon-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.251-256
    • /
    • 2011
  • In this paper, we analyze the distance between two systems, WiBro and WLAN, compared to standard interference probability for channel co-use in order to be used as a criteria in realization. Co-channel and adjacent channel interference probability and its effect of (WiBro) into Wireless LAN (WLAN) in TV White Spaces (TVWS) is evaluated through Spectrum Engineering Advanced Monte Carlo Analysis Tool(SEAMCAT) based on the Monte-Carlo simulation method. As a result, in the case of co-channel interference, the minimum distance between WiBro Mobile Station(MS) and WLAN User Equipment (UE) should be 210 m to allow the maximum transmitter power of WiBro UE of 25 dBm. The transmit power of WiBro BS have to be reduced to -4.96 dBm.

A Study of Radio Wave Propagation Criterion for the Cognitive Radio System using Interference Analysis in Broadcasting Band (방송대역에서 간섭분석을 이용한 무선인지 시스템의 전파 전달기준에 관한 연구)

  • Choi, Joo-Pyoung;Duy, Vo Quoc;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.1014-1022
    • /
    • 2009
  • In this paper, interference analysis is carried out to obtain the operating criterion and coexistence condition between digital television devices and cognitive radio-based mobile wimax devices in the UHF (Ultra High Frequency) broadcasting frequency bands. To this end, an efficient interfering calculation tool known as SEAMCAT (Spectrum Engineering Advanced Monte-Carlo Analysis Tool) is employed to acquire the coexistence criterions between heterogeneous radio links operating in the same portion of spectrum. As a result, these criterions will be used to achieve interference temperature limit level applied to interference temperature model for analyzing the capacity of cognitive radio receivers accurately.

Analysis on the Impact of UWB Sensor on Broadband Wireless Communication System (UWB 센서에 의한 광대역 무선 시스템의 간섭 영향 분석)

  • Cheng, Yan-Ming;Lee, Il-Kyoo;Lee, Yong-Woo;Oh, Seung-Hyeub;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • This paper presents the impacts of Ultra Wide-Band(UWB) sensor using frequency of 4.5 GHz on Broadband Wireless communication system which uses frequency of 4.5 GHz. The Minimum Coupling Loss (MCL) method and Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT) is used to evaluate the interference effects of UWB sensor on Broadband Wireless communication system, respectively. The minimum protection distance between single UWB sensor and mobile station of Broadband Wireless communication system should be more than 1.2 m to guarantee the co-existence. In case of multiple UWB sensors, UWB transmitting PSD of around -68.5 dBm/MHz below should be required to guarantee interference probability of 5% below for mobile station of Broadband Wireless communication system.

Interference Analysis based on the Monte-Carlo Method (Monte-Carlo 기반의 간섭분석에 관한 연구)

  • Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • In this paper, we proposed the methodology of interference analysis based on monte-carlo method for effective use of Industrial, Scientific, Medical (ISM) band. The interference scenario is divided according to the distance and density. The simulation of interference analysis evaluates the interference probability according to distribution density of Interfering Transmitters (It) in the Secure Interference Area (SIA). The SIA is gained from the Interference Efficiency Range that satisfied to Interference Permissible Range of Victim Receiver (Vr). Simulation result that apply the proposed interference scenario to the WLAN and bluetooth, Interference Permissible Range was 60~400m. And the WLAN was acceptable within interference permissible range to six bluetooth that exist in the SIA. In the same condition, when applied Listen Before Talk (LBT) based on Cognitive Radio (CR) to the bluetooth using Frequency Hopping (FH), interference probability was decreased sharply. The Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT) that has been developed based on the monte-carlo method by European Radio-communications Office (ERO) were used to the interference simulation.

  • PDF

A Study on Minimum Transmit Power and Interference in ZigBee Transceivers at 2.4GHz in Multiple Integrated Laser Engagement System (2.4GHz대역 ZigBee 송수신기를 사용한 과학화 전투훈련 시스템에서 최소송신전력과 간섭에 관한 연구)

  • Kwak, Hyun-Sang;Yoo, Ho-Joon;Kim, Young-Ho;Chun, Sang-Hyun;Kim, Jong-Heon;Lee, Chan-Joo;Lim, Seung-Chan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.47-54
    • /
    • 2008
  • In this paper, interference analysis has been performed between RF receiver and transmitters on each soldier for Multiple Integrated Laser Engagement System(MILES) which are following ZigBee standard. In order to obtain minimum transmit power without interference, 1% Packet Error Rates(PER) from 14 transmitters attached on a soldier to a receiver are measured with the scenarios for simple transmitting and receiving network configuration and for repeating network configuration. Based on this transmit power, the available distance for interference free among soldiers is simulated using Spectrum Engineering Advanced Monte Carlo Analysis Tool(SEAMCAT). Later scenario gives the benefit of 10dB lower transmit power, smaller and lighter power source, and better activity of trainee.

Analysis on Interference Impact of WiFi on DTV (DTV에 대한 WiFi의 간섭영향 분석)

  • Cheng, Yan-Ming;Cho, In-Kyoung;Lee, Il-Kyoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1357-1362
    • /
    • 2011
  • TV White Spaces (TVWS) are freed up after transition from analog television to Digital Television (DTV). Some wireless communications are allowable to operate in TVWSs, such unlicensed Wireless Fidelity (WiFi). Because TVWSs are located in the VHF and UHF bands, TVWSs can provide significantly better coverage and wall penetration inside buildings and other structures than the 2.4 GHz and 5 GHz WiFi frequencies currently in use. Therefore, this paper assumes that WiFi will be deployed in TVWSs. However, the interference impact of WiFi on DTV has to be taken into account. The interference probability in DTV receiver was evaluated by using Spectrum Engineering Advanced Monte-Carlo Analysis Tool (SEAMCAT). As a result, when 20 WiFi UEs are simultaneously operating at the maximum transmit power of 23 dBm and the guard band is 22 MHz, the protection distance should be at least 6 km to meet the interference probability of 5% in DTV receiver.

A Study on the Analysis of Interference Probability between Radio devices for Intra-wireless fishing boat communications (Intra-wireless 어선통신용 무선기기간 간섭확률분석에 관한 연구)

  • Kim, Keun-O;Park, Gye-Kack;Cho, Ju-Phil;Cha, Jae-Sang;Lee, Min-Ho;Kim, Ji-Hyung;Lee, Jung-Hoon;Kim, Seong-Kweon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.243-246
    • /
    • 2008
  • ISM(Industrial, Scientific, Medical)대역은 비면허 대역으로 일정한 출력 규제만 지키면 자유롭게 사용할 수 있다는 장점으로 인하여 육상 통신뿐만 아니라 해상 통신 영역까지 그 사용량이 급증하고 있다. 이에 어선 내에서 사용하는 전파응용설비 및 ISM대역을 사용하는 소출력무선기기 등과의 전파간섭 문제는 시스템의 안정성을 열화시킬 수 있는 요인이 되며, 선박상황을 고려하면 안전성과 직결되므로, 간과되지 말아야 한다. 따라서 ISM대역에서 사용되거나 사용될 무선설비의 간섭확률 분석은 필수적이다. 본 논문에서는 Monte-Carlo 방식을 기반으로 하는 SEAMCAT를 이용하여 거리 및 밀도에 따른 간섭 시나리오와 전파 간섭 simulation methodology를 제안하였으며, 해상에서 환경을 가정하여 다른 전파간섭을 배제하였다. 제안된 시나리오를 적용하여 13.56MHz ISM 대역의 거리 시나리오 시뮬레이션 결과 RFID는 4.7m 이상, 모형기기는 2.7m 이상의 동종 기기간 이격거리를 가질 경우 간섭 영향이 양호하였다. 밀도 시나리오 시뮬레이션 결과 RFID(${V_r}$)를 중심으로 간섭 영향권에 RFID와 모형기기가 각각 2개 이하, 모형기기(${V_r}$)를 중심으로 간섭 영향권에 모형기기 2개 이하, RFID 1개 이하로 사용될 경우 통신환경이 양호함을 알 수 있었다. 제안된 간섭 시나리오 및 시뮬레이션 기법은 향후 ISM대역의 규제 정책 및 간섭확률 분석에 기여할 것으로 기대된다.

  • PDF

An Efficient Channel Selection and Power Allocation Scheme for TVWS based on Interference Analysis in Smart Metering Infrastructure

  • Huynh, Chuyen Khoa;Lee, Won Cheol
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.50-64
    • /
    • 2016
  • Nowadays, smart meter (SM) technology is widely effectively used. In addition, power allocation (PA) and channel selection (CS) are considered problems with many proposed approaches. In this paper, we will suggest a specific scenario for an SM configuration system and show how to solve the optimization problem for transmission between SMs and the data concentrator unit (DCU), the center that collects the data from several SMs, via simulation. An efficient CS with PA scheme is proposed in the TV white space system, which uses the TV band spectrum. On the basic of the optimal configuration requirements, SMs can have a transmission schedule and channel selection to obtain the optimal efficiency of using spectrum resources when transmitting data to the DCU. The optimal goals discussed in this paper are the maximum capacity or maximum channel efficiency and the maximum allowable power of the SMs used to satisfy the quality of service without harm to another wireless system. In addition, minimization of the interference to the digital television system and other SMs is also important and needs to be considered when the solving coexistence scenario. Further, we propose a process that performs an interference analysis scheme by using the spectrum engineering advanced Monte Carlo analysis tool (SEAMCAT), which is an integrated software tool based on a Monte-Carlo simulation method. Briefly, the process is as follows: The optimization process implemented by genetic evolution optimization engines, i.e., a genetic algorithm, will calculate the best configuration for the SM system on the basis of the interference limitation for each SM by SEAMCAT in a specific configuration, which reaches the solution with the best defined optimal goal satisfaction.

System Co-existence Analysis Using Monte-Carlo Method (몬테-카를로(Monte-Carlo) 방법을 적용한 시스템 양립성 분석)

  • KIm, Young-Hwan;Eo, Pill-Seon;Yang, Hoon-Gee;Park, Seung-Keun;Cho, Pyung-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.193-196
    • /
    • 2005
  • This paper presents a Monte-Carlo based method to obtain a probability of interference among systems. We show an efficient algorithm to calculate not only in-band interference for a given emission mask, but out-of-band interference, which depends on the blocking performance of a victim receiver filter. Applying the proposed method to an arbitrary system, we show the simulation results by Matlab and compare them with those by a SEAMCAT software

  • PDF