• 제목/요약/키워드: Se Deposition

검색결과 475건 처리시간 0.029초

$Cu_2ZnSnS_4$ Thin Film Absorber Synthesized by Chemical Bath Deposition for Solar Cell Applications

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • New photovoltaic (PV) materials and manufacturing approaches are needed for meeting the demand for lower-cost solar cells. The prototypal thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4~1.6 ev and a large absorption coefficient of ${\sim}10^4\;cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative method for large area deposition of CZTS thin films that is potentially high throughput and inexpensive when used to produce monolithically integrated solar panel modules. Specifically, we have developed an aqueous chemical approach based on chemical bath deposition (CBD) with a subsequent sulfurization heat treatment. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and good optical properties. A preliminary solar cell device was fabricated to demonstrate rectifying and photovoltaic behavior.

  • PDF

펄스레이저증착법으로 증착한 Indium Zinc Oxide 박막의 물성 (Properties of Indium Zinc Oxide Thin Films Prepared by Pulsed Laser Deposition)

  • 최학순;정일교;신문수;김헌오;김용수
    • 한국전기전자재료학회논문지
    • /
    • 제24권7호
    • /
    • pp.537-542
    • /
    • 2011
  • Recently, n-InZnO/p-CuO oxide diode has attracted great attention due to possible application for selector device of 3-dimensional cross-point resistive memory structures. To investigate the detailed properties of InZnO (IZO), we have deposited IZO films on the fused quartz substrate using PLD (pulsed laser deposition) method at oxygen pressure of 1~100 mTorr and substrate temperature of RT$\sim600^{\circ}C$. The influence of oxygen pressure and substrate temperature on structural, optical and electrical of IZO films is analyzed using XRD (x-ray diffraction), SEM (scanning electron microscopy), UV-Vis spectrophotometry, spectroscopic ellipsometry (SE) and hall measurements. The XRD results shows that the deposited thin films are polycrystalline over $300^{\circ}C$ of substrate temperature independent of oxygen pressure. The resistivity of films was increased as oxygen pressure and substrate temperature decrease. The thickness and optical constants of the deposited films measured with UV-Vis spectrophotometer were also compared with those of broken SEM and SE results.

Effect of Complex Agent NH3 Concentration on the Chemically Deposited Zn Compound Thin Film on the $Cu(In,Ga)Se_2$

  • Shin, Dong-Hyeop;Larina, Liudmila;Yun, Jae-Ho;Ahn, Byung-Tae;Park, Hi-Sun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.35.1-35.1
    • /
    • 2010
  • The Cu(In,Ga)Se2(CIGS) thin film solar cells have been achieved until almost 20% efficiency by NREL. These solar cells include chemically deposited CdS as buffer layer between CIGS absorber layer and ZnO window layer. Although CIGS solar cells with CdS buffer layer show excellent performance, many groups made hard efforts to overcome its disadvantages in terms of high absorption of short wavelength, Cd hazardous element. Among Cd-free candidate materials, the CIGS thin film solar cells with Zn compound buffer layer seem to be promising with 15.2%(module by showa shell K.K.), 18.6%(small area by NREL). However, few groups were successful to report high-efficiency CIGS solar cells with Zn compound buffer layer, compared to be known how to fabricate these solar cells. Each group's chemical bah deposition (CBD) condition is seriously different. It may mean that it is not fully understood to grow high quality Zn compound thin film on the CIGS using CBD. In this study, we focused to clarify growth mechanism of chemically deposited Zn compound thin film on the CIGS, especially. Additionally, we tried to characterize junction properties with unfavorable issues, that is, slow growth rate, imperfect film coverage and minimize these issues. Early works reported that film deposition rate increased with reagent concentration and film covered whole rough CIGS surface. But they did not mention well how film growth of zinc compound evolves homogeneously or heterogeneously and what kinds of defects exist within film that can cause low solar performance. We observed sufficient correlation between growth quality and concentration of NH3 as complex agent. When NH3 concentration increased, thickness of zinc compound increased with dominant heterogeneous growth for high quality film. But the large amounts of NH3 in the solution made many particles of zinc hydroxide due to hydroxide ions. The zinc hydroxides bonded weakly to the CIGS surface have been removed at rinsing after CBD.

  • PDF

Synthesis and Characterization of CZTS film deposited by Chemical Bath Deposition method

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.99.1-99.1
    • /
    • 2012
  • The thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4 - 1.6 eV and a large absorption coefficient of ~104 $cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative aqueous chemical approach based on chemical bath deposition (CBD) method for large area deposition of CZTS thin films. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and some factors like triethanolamine, ammonia, temperature which strongly affect on the morphology of CZTS film.

  • PDF

Synthesis and Characterization of SnO2 Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition Using SnCl4 Precursor and Oxygen Plasma

  • 이동권;김다영;권세훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.254-254
    • /
    • 2016
  • Tin dioxide (SnO2) thin film is one of the most important n-type semiconducting materials having a high transparency and chemical stability. Due to their favorable properties, it has been widely used as a base materials in the transparent conducting substrates, gas sensors, and other various electronic applications. Up to now, SnO2 thin film has been extensively studied by a various deposition techniques such as RF magnetron sputtering, sol-gel process, a solution process, pulsed laser deposition (PLD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) [1-6]. Among them, ALD or plasma-enhanced ALD (PEALD) has recently been focused in diverse applications due to its inherent capability for nanotechnologies. SnO2 thin films can be prepared by ALD or PEALD using halide precursors or using various metal-organic (MO) precursors. In the literature, there are many reports on the ALD and PEALD processes for depositing SnO2 thin films using MO precursors [7-8]. However, only ALD-SnO2 processes has been reported for halide precursors and PEALD-SnO2 process has not been reported yet. Herein, therefore, we report the first PEALD process of SnO2 thin films using SnCl4 and oxygen plasma. In this work, the growth kinetics of PEALD-SnO2 as well as their physical and chemical properties were systemically investigated. Moreover, some promising applications of this process will be shown at the end of presentation.

  • PDF

Effect of deposition parameters on structure of ZnO films deposited by an DC Arc Plasmatron

  • Penkov, Oleksiy V.;Chun, Se-Min;Kang, In-Jae;Lee, Heon-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.255-255
    • /
    • 2011
  • Zinc oxide based thin films have been extensively studied in recent several years because they have very interesting properties and zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technologies don't completely satisfy the industrial requirements. In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photoelectron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Increasing of the oxygen content in the gas mixture during deposition allow to obtain high-resistive protective and insulation coatings with high adhesion to the metallic surface.

  • PDF

Influence of Annealing Temperature on Crystal Orientation of Electrodeposited Sb2Se3 Thin-Film Photovoltaic Absorbers

  • Kim, Seonghyun;Lee, Seunghun;Park, Jaehan;Kim, Shinho;Kim, Yangdo
    • 한국재료학회지
    • /
    • 제32권5호
    • /
    • pp.243-248
    • /
    • 2022
  • This study demonstrates a different approach method to fabricate antimony selenide (Sb2Se3) thin-films for the solar cell applications. As-deposited Sb2Se3 thin-films are fabricated via electrodeposition route and, subsequently, annealed in the temperature range of 230 ~ 310℃. Cyclic voltammetry is performed to investigate the electrochemical behavior of the Sb and Se ions. The deposition potential of the Sb2Se3 thin films is determined to be -0.6 V vs. Ag/AgCl (in 1 M KCl), where the stoichiometric composition of Sb2Se3 appeared. It is found that the crystal orientations of Sb2Se3 thin-films are largely dependent on the annealing temperature. At an annealing temperature of 250 ℃, the Sb2Se3 thin-film grew most along the c-axis [(211) and/or (221)] direction, which resulted in the smooth movement of carriers, thereby increasing the carrier collection probability. Therefore, the solar cell using Sb2Se3 thin-film annealed at 250 ℃ exhibited significant enhancement in JSC of 10.03 mA/cm2 and a highest conversion efficiency of 0.821 % because of the preferred orientation of the Sb2Se3 thin film.

Mo 패턴을 이용한 3-D 구조의 Cu2ZnSn (SxSe1-x)4 (CZTSSe) 박막형 태양전지 제작 (3-D Structured Cu2ZnSn (SxSe1-x)4 (CZTSSe) Thin Film Solar Cells by Mo Pattern using Photolithography)

  • 조은진;강명길;신형호;윤재호;문종하;김진혁
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.20-24
    • /
    • 2017
  • Recently, three-dimensional (3D) light harvesting structures are highly attracted because of their high light harvesting capacity and charge collection efficiencies. In this study, we have fabricated $Cu_2ZnSn(S_xSe_{1-x})_4$ based 3D thin film solar cells on PR patterned Molybdenum (Mo) substrates using photolithography technique. Specifically, Mo patterns were deposited on PR patterned Mo substrates by sputtering and the thin Cu-Zn-Sn stacked layer was deposited over this Mo patterns by sputtering technique. The stacked Zn-Sn-Cu precursor thin films were sulfo-selenized to form CZTSSe pattern. Finally, CZTSSe absorbers were coated with thin CdS layer using chemical bath deposition and ZnO window layer was deposited over CZTSSe/CdS using DC sputtering technique. Fabricated 3-D solar cells were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) analysis, Field-emission scanning electron microscopy (FE-SEM) to study their structural, compositional and morphological properties, respectively. The 3% efficiency is achieved for this kind of solar cell. Further efforts will be carried out to improve the performance of solar cell through various optimizations.

Cracked Selenium을 이용한 CIGS 박막 셀렌화 공정에 관한 연구 (A Study on Selenization of Cu-In-Ga Precursors by Cracked Selenium)

  • 김민영;김기림;김종완;손경태;이종관;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제26권7호
    • /
    • pp.503-509
    • /
    • 2013
  • In this study, $Cu(In_{1-x},Ga_x)Se_2$ (CIGS) thin films were prepared on the Mo coated soda-lime glass by the DC magnetron sputtering and a subsequent selenization process. For the selenization process, selenization rapid thermal process(RTP) with cracker cell, which was helpful to smaller an atomic of Se, was adopted. To make CIGS layer, they were then annealed with the cracked Se. Based on this selenization method, we made several CIGS thin film and investigated the effects of In deposition time, and selenization time. Through x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM), it is found that the Mo/In/CuGa structure and the high sputtering power shows the dominant chalcopyrite structure and have a uniform distribution of the grain size. The CIGS films with the In deposition time of 5 min has the best structure due to the smooth surface. And CIGS films with the selenization time of 50 min show good crystalline growth without any voids.

PN 접합면의 증착조건에 따른 $Cu(In,\;Ga)Se_2$ 박막 태양전지 특성 (Characteristics of $Cu(In,\;Ga)Se_2$ Thin Film So1ar Cells with Deposition Conditions of PN Junction Interface)

  • 김석기;이정철;강기환;윤경훈;박이준;송진수;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.331-334
    • /
    • 2003
  • Photovoltaics is considered as one of the most promising new energy technology, because its energy source is omni present, pollution-free and inexhaustive. It is agreed that these solar cells must be thin film type because thin film process is cost-efficive in the fact that it uses much less raw materials and can be continuous. The defect chalcopyrite material $CuIn_3Se_5$ has been identified as playing an essential role in efficient photovoltaic action in $CuInSe_2$-based devicesm It has been reported to be of n-type conductivity, forming a p-n junction with its p-type counterpart $CuInSe_2$. Because the most efficient cells consist of the $Cu(In,Ga)Se_2$ quarternary, knowledge of some physical properties of the Ga-containing defect chalcopyrite $Cu(In,Ga)_3Se_5$ may help us better understand the junction phenomena in such devices.

  • PDF