Browse > Article
http://dx.doi.org/10.4313/JKEM.2013.26.7.503

A Study on Selenization of Cu-In-Ga Precursors by Cracked Selenium  

Kim, Minyoung (Department of Electronic Engineering, Korea National University of Transportation)
Kim, Girim (Department of Electronic Engineering, Korea National University of Transportation)
Kim, Jongwan (Department of Electronic Engineering, Korea National University of Transportation)
Son, Kyeongtae (Department of Electronic Engineering, Korea National University of Transportation)
Lee, Jongkwan (DMS Co., LTD.)
Lim, Donggun (Department of Electronic Engineering, Korea National University of Transportation)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.26, no.7, 2013 , pp. 503-509 More about this Journal
Abstract
In this study, $Cu(In_{1-x},Ga_x)Se_2$ (CIGS) thin films were prepared on the Mo coated soda-lime glass by the DC magnetron sputtering and a subsequent selenization process. For the selenization process, selenization rapid thermal process(RTP) with cracker cell, which was helpful to smaller an atomic of Se, was adopted. To make CIGS layer, they were then annealed with the cracked Se. Based on this selenization method, we made several CIGS thin film and investigated the effects of In deposition time, and selenization time. Through x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM), it is found that the Mo/In/CuGa structure and the high sputtering power shows the dominant chalcopyrite structure and have a uniform distribution of the grain size. The CIGS films with the In deposition time of 5 min has the best structure due to the smooth surface. And CIGS films with the selenization time of 50 min show good crystalline growth without any voids.
Keywords
Selenization; CIGS; Cracker cell; RTP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt. Res. Appl., 19, 894 (2011).   DOI   ScienceOn
2 S. Seyrling, S. Calnan, S. Bucheler, J. Hupkes, S. Wenger, D. Bremaud, H. Zogg, and A. N. Tiwari, Thin Solid Films, 517, 2411 (2009).   DOI   ScienceOn
3 K. W. Mitchell, C. Eberspacher, J. Ermer, and D. Pier, Proc. 20th IEEE Photovoltaic Specialists Conf., 1384 (1989).
4 J. Han, J. Koo, H. Jung, and W. K. Kim, J. Alloys Comp., 552, 131 (2013).   DOI   ScienceOn
5 S. Ito, I. M. Dharmadas, G. J. Tolan, J. S. Roberts, G. Hill, H. Miura, J. H. Yum, P. Pechy, P. Liska, P. Comte, and M. Gratzel, Sol. Energy, 85, 1220 (2011).   DOI   ScienceOn
6 F. O. Adurodija, M. J. Carter, and R. Hill, Sol. Energy Mater. Sol. Cells, 40, 359 (1996).   DOI   ScienceOn
7 T. Yamamoto, M. Nakamura, J. Ishizuki, T. Deguchi, S. Ando, H. Nakanishi, and S. Chichibu, J. Phys. Chem. Solids, 64, 1855 (2003).   DOI   ScienceOn
8 A. M. Gabor, J. R. Tuttle, M. A. Contreras, D. S. Albin, A. Franz, D. W. Niles, and R. Noufi, 12th European Photovoltaic Solar Energy Conf., 1 (1994).
9 F. O. Adurodija, M. J. Carter, and R. Hill, Sol. Energ. Mat. Sol. C., 40 (1996).
10 F. B. Dejene and V. Alberts, J. Phys. D: Appl. Phys., 38, 22 (2005).   DOI   ScienceOn
11 N. Kohara, T. Negami, M. Nishitani, Y. Hashimoto, and T. Wada, Appl. Phys. Lett., 67, 835 (1997).
12 S. K. Kim, J. C. Lee, K. H. Yoon, J. Song, S. H. Kwon, and B. T. Ahn, Kor. Sol. Energ. Soc. Spring Conference, 98, 507 (1998).
13 I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog. Photovolt: Res. Appl., 235 (2008).
14 T. Nakada, H. Ohbo, M Fukuda, and A. Kunioka, Sol. Energ. Mat. Sol. C., 49, 216 (1997).
15 T. Dullweber, G. Hanna, U. Rau, and H. W. Schock, Sol. Energ. Mat. Sol. C., 67, 145 (2001).   DOI   ScienceOn