DOI QR코드

DOI QR Code

Influence of Annealing Temperature on Crystal Orientation of Electrodeposited Sb2Se3 Thin-Film Photovoltaic Absorbers

  • Kim, Seonghyun (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Seunghun (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Jaehan (Department of Materials Science and Engineering, Pusan National University) ;
  • Kim, Shinho (Innovative Graduate Education Program for Global High-tech Materials and Parts, Pusan National University) ;
  • Kim, Yangdo (Department of Materials Science and Engineering, Pusan National University)
  • Received : 2022.04.04
  • Accepted : 2022.05.17
  • Published : 2022.05.27

Abstract

This study demonstrates a different approach method to fabricate antimony selenide (Sb2Se3) thin-films for the solar cell applications. As-deposited Sb2Se3 thin-films are fabricated via electrodeposition route and, subsequently, annealed in the temperature range of 230 ~ 310℃. Cyclic voltammetry is performed to investigate the electrochemical behavior of the Sb and Se ions. The deposition potential of the Sb2Se3 thin films is determined to be -0.6 V vs. Ag/AgCl (in 1 M KCl), where the stoichiometric composition of Sb2Se3 appeared. It is found that the crystal orientations of Sb2Se3 thin-films are largely dependent on the annealing temperature. At an annealing temperature of 250 ℃, the Sb2Se3 thin-film grew most along the c-axis [(211) and/or (221)] direction, which resulted in the smooth movement of carriers, thereby increasing the carrier collection probability. Therefore, the solar cell using Sb2Se3 thin-film annealed at 250 ℃ exhibited significant enhancement in JSC of 10.03 mA/cm2 and a highest conversion efficiency of 0.821 % because of the preferred orientation of the Sb2Se3 thin film.

Keywords

Acknowledgement

This work was supported by a 2-year Research Grant of Pusan National University

References

  1. W. Septina, S. Ikeda, Y. Iga, T. Harada and M. Matsumura, Thin Solid Films, 550, 700 (2014). https://doi.org/10.1016/j.tsf.2013.11.046
  2. Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R. E. I. Schropp and Y. Mai, Nat. Commun., 10, 125 (2019). https://doi.org/10.1038/s41467-018-07903-6
  3. L. Wang, D. Li, K. Li, C. Chen, H. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang, Y. He, H. Song, G. Niu and J. Tang, Nat. Energy, 2, 17046 (2017). https://doi.org/10.1038/nenergy.2017.46
  4. M. Maghraoui-Meherzi, T. B. Nasr and M. Dachraoui, Mater. Sci. Semicond. Process., 16, 179 (2013). https://doi.org/10.1016/j.mssp.2012.04.019
  5. C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han and J. Tang, Appl. Phys. Lett., 107, 043905 (2015). https://doi.org/10.1063/1.4927741
  6. R. N. Bhattacharya, Sol. Energy Mater. Sol. Cells, 113, 96 (2013). https://doi.org/10.1016/j.solmat.2013.01.028
  7. J. J. Scragg, D. M. Berg and P. J. Dale, J. Electroanal. Chem., 646, 52 (2010). https://doi.org/10.1016/j.jelechem.2010.01.008
  8. Y. Kwon, Y. Kim, M. Jeong, H. Do, H. Cho and J. Lee, Sol. Energy Mater. Sol. Cells, 172, 11 (2017). https://doi.org/10.1016/j.solmat.2017.07.004
  9. T. T. Ngo, S. Chavhan, I. Kosta, O. Miguel, H.-J. Grande and R. Tena-Zaera, ACS Appl. Mater. Interfaces, 6, 2836 (2014). https://doi.org/10.1021/am405416a
  10. N. Hatsuta, D. Takemori and M. Takashiri, J. Alloys Compd., 685, 147 (2016). https://doi.org/10.1016/j.jallcom.2016.05.268
  11. Y. Lai, C. Han, X. Lv, J. Yang, F. Liu, J. Li and Y. Liu, J. Electroanal. Chem., 671, 73 (2012). https://doi.org/10.1016/j.jelechem.2012.02.018
  12. M. Kemell, H. Saloniemi, M. Ritala and M. Leskela, Electrochim. Acta, 45, 3737 (2000). https://doi.org/10.1016/S0013-4686(00)00450-3
  13. H. Lee, J. Lee, Y. Hwang and Y. Kim, Curr. Appl. Phys., 14, 18 (2014). https://doi.org/10.1016/j.cap.2013.10.001
  14. Y. Lai, F. Liu, J. Li, Z. Zhang and Y. Liu, J. Electroanal. Chem., 639, 187 (2010). https://doi.org/10.1016/j.jelechem.2009.11.026
  15. A. Tang, M. Long and Z. He, Electrochim. Acta, 146, 346 (2014). https://doi.org/10.1016/j.electacta.2014.09.027
  16. X. Shi, X. Zhang, C. Ma and C. Wang, J. Solid State Electrochem., 14, 93 (2009). https://doi.org/10.1007/s10008-009-0793-6
  17. R. Kowalik, P. Zabinski and K. Fitzner, Electrochim. Acta, 53, 6184 (2008). https://doi.org/10.1016/j.electacta.2007.12.009
  18. J. Li, B. Wang, F. Liu, J. Yang, J. Li, J. Liu, M. Jia, Y. Lai and Y. Liu, Electrochim. Acta, 56, 8597 (2011). https://doi.org/10.1016/j.electacta.2011.07.042
  19. Y. Lai, Z. Chen, C. Han, L. Jiang, F. Liu, J. Li and Y. Liu, Appl. Surf. Sci., 261, 510 (2012). https://doi.org/10.1016/j.apsusc.2012.08.046
  20. X. Liu, X. Xiao, Y. Yang, D. Xue, D. Li, C. Chen, S. Lu, L. Gao, Y. He, M. C. Beard, G. Wang, S. Chen and J. Tang, Prog. Photovoltaics, 25, 861 (2017). https://doi.org/10.1002/pip.2900
  21. Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent and J. Tang, Nat. Photonics, 9, 409 (2015). https://doi.org/10.1038/nphoton.2015.78
  22. K. J. Tiwari, M. Ren, S. K. Vajandar, T. Osipowicz, A. Subrahmanyam and P. Malar, Solar Energy, 160, 56 (2018). https://doi.org/10.1016/j.solener.2017.11.074
  23. M. Leng, M. Luo, C. Chen, S. Qin, J. Chen, J. Zhong and J. Tang, Appl. phys., 105, 083905 (2014).