Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.5.243

Influence of Annealing Temperature on Crystal Orientation of Electrodeposited Sb2Se3 Thin-Film Photovoltaic Absorbers  

Kim, Seonghyun (Department of Materials Science and Engineering, Pusan National University)
Lee, Seunghun (Department of Materials Science and Engineering, Pusan National University)
Park, Jaehan (Department of Materials Science and Engineering, Pusan National University)
Kim, Shinho (Innovative Graduate Education Program for Global High-tech Materials and Parts, Pusan National University)
Kim, Yangdo (Department of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.32, no.5, 2022 , pp. 243-248 More about this Journal
Abstract
This study demonstrates a different approach method to fabricate antimony selenide (Sb2Se3) thin-films for the solar cell applications. As-deposited Sb2Se3 thin-films are fabricated via electrodeposition route and, subsequently, annealed in the temperature range of 230 ~ 310℃. Cyclic voltammetry is performed to investigate the electrochemical behavior of the Sb and Se ions. The deposition potential of the Sb2Se3 thin films is determined to be -0.6 V vs. Ag/AgCl (in 1 M KCl), where the stoichiometric composition of Sb2Se3 appeared. It is found that the crystal orientations of Sb2Se3 thin-films are largely dependent on the annealing temperature. At an annealing temperature of 250 ℃, the Sb2Se3 thin-film grew most along the c-axis [(211) and/or (221)] direction, which resulted in the smooth movement of carriers, thereby increasing the carrier collection probability. Therefore, the solar cell using Sb2Se3 thin-film annealed at 250 ℃ exhibited significant enhancement in JSC of 10.03 mA/cm2 and a highest conversion efficiency of 0.821 % because of the preferred orientation of the Sb2Se3 thin film.
Keywords
antimony selenide; V-VI compound semiconductor; thin-film solar cell; electrodeposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Septina, S. Ikeda, Y. Iga, T. Harada and M. Matsumura, Thin Solid Films, 550, 700 (2014).   DOI
2 Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R. E. I. Schropp and Y. Mai, Nat. Commun., 10, 125 (2019).   DOI
3 L. Wang, D. Li, K. Li, C. Chen, H. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang, Y. He, H. Song, G. Niu and J. Tang, Nat. Energy, 2, 17046 (2017).   DOI
4 M. Maghraoui-Meherzi, T. B. Nasr and M. Dachraoui, Mater. Sci. Semicond. Process., 16, 179 (2013).   DOI
5 C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han and J. Tang, Appl. Phys. Lett., 107, 043905 (2015).   DOI
6 R. N. Bhattacharya, Sol. Energy Mater. Sol. Cells, 113, 96 (2013).   DOI
7 Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent and J. Tang, Nat. Photonics, 9, 409 (2015).   DOI
8 T. T. Ngo, S. Chavhan, I. Kosta, O. Miguel, H.-J. Grande and R. Tena-Zaera, ACS Appl. Mater. Interfaces, 6, 2836 (2014).   DOI
9 J. J. Scragg, D. M. Berg and P. J. Dale, J. Electroanal. Chem., 646, 52 (2010).   DOI
10 Y. Kwon, Y. Kim, M. Jeong, H. Do, H. Cho and J. Lee, Sol. Energy Mater. Sol. Cells, 172, 11 (2017).   DOI
11 N. Hatsuta, D. Takemori and M. Takashiri, J. Alloys Compd., 685, 147 (2016).   DOI
12 Y. Lai, C. Han, X. Lv, J. Yang, F. Liu, J. Li and Y. Liu, J. Electroanal. Chem., 671, 73 (2012).   DOI
13 M. Kemell, H. Saloniemi, M. Ritala and M. Leskela, Electrochim. Acta, 45, 3737 (2000).   DOI
14 H. Lee, J. Lee, Y. Hwang and Y. Kim, Curr. Appl. Phys., 14, 18 (2014).   DOI
15 Y. Lai, F. Liu, J. Li, Z. Zhang and Y. Liu, J. Electroanal. Chem., 639, 187 (2010).   DOI
16 A. Tang, M. Long and Z. He, Electrochim. Acta, 146, 346 (2014).   DOI
17 X. Shi, X. Zhang, C. Ma and C. Wang, J. Solid State Electrochem., 14, 93 (2009).   DOI
18 J. Li, B. Wang, F. Liu, J. Yang, J. Li, J. Liu, M. Jia, Y. Lai and Y. Liu, Electrochim. Acta, 56, 8597 (2011).   DOI
19 Y. Lai, Z. Chen, C. Han, L. Jiang, F. Liu, J. Li and Y. Liu, Appl. Surf. Sci., 261, 510 (2012).   DOI
20 X. Liu, X. Xiao, Y. Yang, D. Xue, D. Li, C. Chen, S. Lu, L. Gao, Y. He, M. C. Beard, G. Wang, S. Chen and J. Tang, Prog. Photovoltaics, 25, 861 (2017).   DOI
21 R. Kowalik, P. Zabinski and K. Fitzner, Electrochim. Acta, 53, 6184 (2008).   DOI
22 K. J. Tiwari, M. Ren, S. K. Vajandar, T. Osipowicz, A. Subrahmanyam and P. Malar, Solar Energy, 160, 56 (2018).   DOI
23 M. Leng, M. Luo, C. Chen, S. Qin, J. Chen, J. Zhong and J. Tang, Appl. phys., 105, 083905 (2014).