• Title/Summary/Keyword: Scutellaria Baicalensis GEORGI

Search Result 97, Processing Time 0.089 seconds

Wogonin attenuates vascular remodeling by inhibiting smooth muscle cell proliferation and migration in hypertensive rat

  • Yang Yang;Shan Huang;Jun Wang;Xiao Nie;Ling Huang;Tianfa Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • Wogonin, extracted from the roots of Scutellaria baicalensis Georgi, has been shown to suppress collagen deposition in spontaneously hypertensive rats (SHRs). This study was performed to investigate the role and mechanism of wogonin underlying vascular remodeling in SHRs. After injection of SHRs with 40 mg/kg of wogonin, blood pressure in rats was measured once a week. Masson's trichrome staining was conducted to observe the changes in aortas and mesenteric arteries. Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were treated with Angiotensin II (Ang II; 100 nM) in the presence or absence of varying concentrations of wogonin. The viability and proliferation of VSMCs were examined using Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, respectively. The migration of VSMCs was examined using wound healing assay and transwell assay. We found that wogonin administration alleviated hypertension, increased lumen diameter, and reduced the thickness of the arterial media in SHRs. Ang II treatment enhanced the viability of VSMCs, which was inhibited by wogonin in a concentration-dependent manner. Wogonin reversed Ang II-induced increases in the viability, proliferation, and migration of VSMCs. Moreover, wogonin inhibited Ang II-induced activation of mitogen-activated protein kinase (MAPK) signaling in VSMCs. Overall, wogonin repressed the proliferative and migratory capacity of VSMCs by regulating the MAPK signaling pathway, thereby attenuating vascular remodeling in hypertensive rats, indicating that wogonin might be a therapeutic agent for the treatment of vascular diseases.

Transcriptome Analyses for the Anti-Adipogenic Mechanism of an Herbal Composition (생약복합물의 지방세포형성억제 기전규명을 위한 전사체 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Bae, Sung-Min;Chae, Soo-Ahn;Lee, Jung-Ju;Oh, Dong-Jin;Park, Suk-Won;Cho, Soo-Hyun;Shim, Yae-Jie;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1054-1065
    • /
    • 2010
  • SH21B is a natural composition composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). In our previous study, we reported that SH21B inhibited adipogenesis and fat accumulation in 3T3-L1 cells through modulation of various regulators in the adipogenesis pathway. The aim of this study was to analyze the transcriptome profiles for the anti-adipogenic effects of SH21B in 3T3-L1 cells. Total RNAs from SH21B-treated 3T3-L1 cells were reverse-transcribed into cDNAs and hybridized to Affymetrix Mouse Gene 1.0 ST array. From microarray analyses, we identified 2,568 genes of which expressions were changed more than two-fold by SH21B, and the clustering analyses of these genes resulted in 9 clusters. Three clusters among the 9 showed down-regulation by SH21B (cluster 4, cluster 6 and cluster 9), and two clusters showed up-regulation by SH21B (cluster 7 and cluster 8) during the adipogenesis of 3T3-L1 cells. It was found that many genes related to cell proliferation and adipogenesis were included in these clusters. Clusters 4, 6 and 9 included genes which were related with adipogenesis induction and cell cycle arrest. Clusters 7 and 8 included genes related to cell proliferation as well as adipogenesis inhibition. These results suggest that the mechanisms of the anti-adipogenic effects of SH21B may be the modulation of genes involved in cell proliferation and adipogenesis.

Baicalein Inhibits the Migration and Invasion of B16F10 Mouse Melanoma Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Choi, Eun-Ok;Cho, Eun-Ju;Jeong, Jin-Woo;Park, Cheol;Hong, Su-Hyun;Hwang, Hye-Jin;Moon, Sung-Kwon;Son, Chang Gue;Kim, Wun-Jae;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.213-221
    • /
    • 2017
  • Baicalein, a natural flavonoid obtained from the rhizome of Scutellaria baicalensis Georgi, has been reported to have anticancer activities in several human cancer cell lines. However, its antimetastatic effects and associated mechanisms in melanoma cells have not been extensively studied. The current study examined the effects of baicalein on cell motility and anti-invasive activity using mouse melanoma B16F10 cells. Within the noncytotoxic concentration range, baicalein significantly inhibited the cell motility and invasiveness of B16F10 cells in a concentration-dependent manner. Baicalein also reduced the activity and expression of matrix metalloproteinase (MMP)-2 and -9; however, the levels of tissue inhibitor of metalloproteinase-1 and -2 were concomitantly increased. The inhibitory effects of baicalein on cell motility and invasiveness were found to be associated with its tightening of tight junction (TJ), which was demonstrated by an increase in transepithelial electrical resistance and downregulation of the claudin family of proteins. Additionally, treatment with baicalein markedly reduced the expression levels of lipopolysaccharide-induced phosphorylated Akt and the invasive activity in B16F10 cells. Taken together, these results suggest that baicalein inhibits B16F10 melanoma cell migration and invasion by reducing the expression of MMPs and tightening TJ through the suppression of claudin expression, possibly in association with a suppression of the phosphoinositide 3-kinase/Akt signaling pathway.

Baicalein induces cell death in Human Lung Carcinoma A549 Cells: Role of Apoptosis and Autophagy pathway (인체폐암 A549 세포에서 Baicalein에 의한 세포사멸 유도: Apoptosis와 Autophagy 경로의 역할)

  • Kim, Chul Hwan;Hwang, Buyng Su;Jeong, Yong Tae;Kim, Min-Jin;Shin, Su Young;Oh, Young Taek;Eom, Jung Hye;Lee, Seung Young;Choi, Kyung Min;Cho, Pyo Yun;Jeong, Jin-Woo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.112-112
    • /
    • 2019
  • Baicalein is one of the main flavonoids derived from roots of Scutellaria baicalensis Georgi, a traditional Oriental medicine. Although baicalein has high antitumor effect on several human carcinomas, the mechanism responsible for this property is not unclear. In this study, the data revealed that baicale-ininduced growth inhibition was associated with the induction of apoptosis connecting with cytochrome c release, down-regulation of anti-apoptotic Bcl-xl and increased the percentage of cells with a loss of mitochondria membrane permeabilization. Baicalein also induced the proteolytic activation of caspases and cleavage of PARP; however, blockage of caspases activation by z-VAD-fmk inhibited baicalein-induced apoptosis. In addition, baicalein enhanced the formation of autophagosomes and up-regulated LC3-II/LC3-I ratio. Interestingly, the pretreatment of bafilomycin A1 recovered baicalein-induced cell death suggesting that autophagy by baicalein roles as protective autophagy. Taken together, our results indicated that this flavonoid induces apoptosis and cell protective autophagy. These data means combination treatment with baicalein and autophagy inhibitor might be a promising anticancer drug.

  • PDF

DEU-7 Derived from Ulmus macrocarpa Improved Immune Functions in Cyclophosphamide-treated Mice (면역억제 마우스 모델에서 왕느릅나무 유래 DEU-7의 면역기능 증강)

  • Kang, Kyung-Hwa;Go, Ji Su;Lee, Inhwan;Lee, Sang Ho;Lee, Sung Do;Kim, Deok Won;Lee, Jong-Hwan;Hwang, HyeJin;Hyun, Sook Kyung;KIM, Byoung Woo;Kim, Chul Min;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1156-1163
    • /
    • 2015
  • The present study investigated the immunomodulatory properties of four different medicinal plants in a cyclophosphamide-treated Balb/c mouse model. One of the four plants, Ulmus macrocarpa, showed partial resistance against immune suppression induced by cyclophosphamide. The bark of U. macrocarpa, commonly known as the Chinese elm, has been used as a pharmaceutical material in Korean traditional medicine to treat bacterial inflammation and induce wound healing. In this study, water extract of U. macrocarpa, named DEU-7, was used for its immunomodulating functional activity. DEU-7 increased the weight of the spleen and the number of splenocytes but did not significantly affect the liver, kidney, and thymus in vivo. A splenocyte viability assay confirmed that DEU-7 influenced ex vivo splenocyte survival. DEU-7 also increased the levels of cytokines, such as IL-2 and IL-4, and immunoglobulins, such as IgM, IgG, and IgA. These results indicated that DEU-7 is involved in the activation of T and B lymphocytes. In addition, DEU-7 was able to maintain the production of cytokines, such as TNF-α, IL-12, and IFN-γ, in the condition of cyclophosphamide-induced immune suppression, suggesting that DEU-7 activated innate immune cells, even under immune suppression. We concluded that DEU-7 aids immunological homeostasis, thereby preventing immune suppression, and aids both innate and adaptive immune response by maintaining the levels of various cytokines and immunoglobulins. Consequently, it is worth investigating the potential of DEU-7 as a supplemental source for immune-enhancing agents.

Anti-Inflammatory Effects of Volatile Flavor Extract from Herbal Medicinal Prescriptions Including Cnidium officinale Makino and Angelica gigas Nakai (천궁 및 당귀를 함유한 한방처방제 휘발성 향기추출물의 항염증 효과)

  • Leem, Hyun-Hee;Kim, Eun-Ok;Seo, Mi-Jae;Choi, Sang-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.3
    • /
    • pp.199-210
    • /
    • 2011
  • This study was conducted to develop functional sources of herbal cosmetics for treatment of skin aging and inflammatory disorders using volatile flavor extracts of four different herbal medicinal prescriptions including Cnidium officinale Makino (COM), Angelica gigas Nakai (AGN), Mentha arvense L. (MAL), Artemisiae argyi Folium (AAF), Paeonia lactiflora Pall (PLP), Rehmanniae Radix Preparata (RRP), Scutellaria baicalensis Georgi (SBG), Panax ginseng C.A. Meyer (PGM), Glycyrrhiza uralensis Fisch (GUF). The volatile flavor extracts of four different herbal medicinal prescriptions (HH-1: COM, AGN, PLP, RRP, HH-2: COM, AGN, PLP, RRP, SBG, PGM, GUF, HH-3: COM, AGN, MAL, AAF, HH-4: COM, AGN, MAL, AAF, SBG, PGM, GUF) were extracted using SDE and their antioxidant and anti-inflammatory effects were measured by using DPPH radical and SLO, respectively. As a result, HH-2 showed moderate DPPH radical scavenging activity (68.24 %) and the strongest SLO inhibitory activity (83.96 %) at 100 ${\mu}g$/mL. Moreover, HH-2 of four different prescriptions significantly inhibited NO production on LPS-stimulated RAW 264.7 cells in a dose-dependent manner without considerable cell cytotoxicity at range of 2.0 ~ 50 ${\mu}g$/mL. Additionally, HH-2 also effectively suppressed the production of $PGE_2$ and IL-6, which are responsible for promoting the inflammatory process. Major volatile components of HH-2 were identified as eugenol, paeonol, butyl phthalide, ${\beta}$-eudesmol and butylidene dihydrophthalide by GC-MS analysis. Thus, these results suggest that HH-2 may be useful as a potential source of anti-inflammatory agents in herbal medicinal cosmetics.

A Study on the Gene Expression of Adipogenic Regulators by an Herbal Composition (생약복합물에 의한 지방세포형성 조절자의 유전자 발현 연구)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Bae, Sung-Min;Chae, Soo-Ahn;Lee, Jung-Ju;Oh, Dong-Jin;Park, Suk-Won;Cho, Soo-Hyun;Shim, Yae-Jie;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.729-735
    • /
    • 2010
  • In our previous study, it was reported that an herbal mixture, SH21B, inhibits fat accumulation and adipogenesis both in vitro and in vivo models of obesity. SH21B is a mixture composed of seven herbs: Scutellaria baicalensis Georgi, Prunus armeniaca Maxim, Ephedra sinica Stapf, Acorus gramineus Soland, Typha orientalis Presl, Polygala tenuifolia Willd, and Nelumbo nucifera Gaertner (Ratio 3:3:3:3:3:2:2). The aim of this study was to investigate the detailed molecular mechanisms of the effects of SH21B on various regulators of the adipogenesis pathway. During the adipogenesis of 3T3-L1 cells, SH21B significantly decreased the expression levels of central transcription factors of adipogenesis, such as peroxisome proliferator-activated receptor (PPAR)$\gamma$ and CCAAT/enhancer binding protein (C/EBP)$\alpha$. To elucidate the detailed molecular mechanism of the anti-adipogenic effects of SH21B, we examined the expression levels of the various pro-adipogenic or anti-adipogenic regulators of adipogenesis upstream of $PPAR{\gamma}$ and C/$EBP{\alpha}$. The mRNA levels of Krox20 and Kruppel-like factor (KLF) 15, which are pro-adipogenic regulators, were significantly down-regulated by SH21B treatment, whereas the mRNA levels of C/$EBP{\gamma}$ and KLF5 were not changed. KLF2 and C/EBP homologous protein (CHOP), which are anti-adipogenic regulators, were significantly up-regulated by SH21B treatment. These results suggest that the molecular mechanism of the anti-adipogenic effect of SH21B involves both the down-regulations of pro-adipogenic regulators, such as Krox20 and KLF15, and the up-regulations of anti-adipogenic regulators, such as KLF2 and CHOP, which results in the suppression of central transcription factors of adipogenesis including $PPAR{\gamma}$ and C/$EBP{\alpha}$.