• 제목/요약/키워드: Screw-in effect

검색결과 368건 처리시간 0.024초

자동차 시트 틸팅 각도에 따른 기어박스 마찰소음 영향도 (Tilting Effect of Automotive Seat System on Squeak Noise)

  • 강재영
    • 한국소음진동공학회논문집
    • /
    • 제20권6호
    • /
    • pp.577-582
    • /
    • 2010
  • The squeak propensity in the gear box of an automotive seat system is investigated analytically. The mating parts in the gear box are the lead screw and the nut, where the friction stresses are exerted on the thread of the screw. The lead screw is modeled as a circular beam allowing the bending and torsional vibrations. In the system, the lead screw converts rotating to translating motion so that it moves the automotive seat slightly tilted on the floor. The tilting angle is considered one major parameter in this study. Therefore, the equations of motion associated with the non-conservative friction force are derived with the inclusion of the tilting angle. It is found that the squeak noise corresponds to the several bending modes of the lead screw and its propensity is increased by the tilting angle of the seat.

마찰을 고려한 볼-스크류 시스템의 정밀 제어 (Precise Control of Ball-Screw Systems with Friction)

  • 김종식;한성익;공준희;신대왕
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.93-101
    • /
    • 2002
  • The effect of nonlinear friction in the low velocity is dominant in precise controlled mechanisms and it is difficult to identify the friction effect. The friction model which Canudas suggested so called, LuGre model is well expressed the friction effect as Streibeck in the law velocity. But it\`s model parameters were estimated continuously in operation for precise control. This paper suggests the sliding mode controller and observer for compensating the friction effect. Experimental results for a ball-screw system show that the proposed method has a good performance especially in the low velocity.

The Effect of Extrusion Conditions on Water-extractable Arabinoxylans from Corn Fiber

  • Jeon, Su-Jung;Singkhornart, Sasathorn;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • 제19권2호
    • /
    • pp.124-127
    • /
    • 2014
  • The effect of feed moisture contents (30%, 40%, and 50%) and screw speed (200 rpm, 250 rpm, and 300 rpm) on the corn fiber gum (CFG) yield and soluble arabinoxylans (SAX) content of destarched corn fiber was investigated. The CFG yields and SAX contents of extruded, destarched corn fiber were higher than that of destarched corn fiber. In extruded, destarched corn fiber, increased screw speed and decreased feed moisture contents resulted in a higher SAX contents. The maximum yields of CFG obtained from extruded, destarched corn fiber were $79.1{\pm}19.0g/kg$ (30% feed moisture content) and $82.3{\pm}11.30g/kg$ (300 rpm screw speed). The highest SAX content was also observed at a screw speed of 300 rpm. The results of the present study show that water extraction and extrusion combined have the potential to increase CFG and SAX yields from corn fiber.

축소모형실험을 이용한 사질토 지반에 근입된 Screw Anchor Pile의 인발저항특성 (Pull-out Capacity of Screw Anchor Pile in Sand Using Reduced-Scale Model Tests)

  • 김대현;유충식
    • 한국지반공학회논문집
    • /
    • 제29권1호
    • /
    • pp.121-133
    • /
    • 2013
  • 본 논문에서는 사질토에서 스크류 앵커 파일의 인발 저항 특성에 대한 실험적 내용을 다루었다. SAP에 대한 소개 및 적용분야 등의 간략한 설명을 시작으로 스크류 파일의 인발저항특성에 대한 이론적 배경들과 축소모형실험의 수행 방법에 대해 소개하였다. 조밀한 모래조건과 느슨한 모래조건에서 스크류 앵커 파일의 인발저항특성을 분석하기 위해 스크류 사이의 간격인 피치와 스크류의 직경을 변화시켜 실험을 수행하였고, 스크류 앵커 파일의 파괴 메커니즘에 근거한 이론적 인발특성에 관한 기존연구들을 검토하여 비교하였다. 연구결과 조밀한 모래조건과 느슨한 모래조건 모두에서 피치의 변화에 따른 인발저항력의 차이는 매우 미미하였고, 직경의 변화에 따라 인발 저항력이 상대적으로 많이 증가함을 확인할 수 있었다. 본 논문에서는 실험결과를 사질토에서 스크류 앵커 파일의 인발저항특성을 파악할 수 있도록 제시하였으며 기존의 이론식과 비교하여 실무적 관점에서의 검토 내용을 기술하였다.

Biomechanical Comparison of Spinal Fusion Methods Using Interspinous Process Compressor and Pedicle Screw Fixation System Based on Finite Element Method

  • Choi, Jisoo;Kim, Sohee;Shin, Dong-Ah
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권2호
    • /
    • pp.91-97
    • /
    • 2016
  • Objective : To investigate the biomechanical effects of a newly proposed Interspinous Process Compressor (IPC) and compare with pedicle screw fixation at surgical and adjacent levels of lumbar spine. Methods : A three dimensional finite element model of intact lumbar spine was constructed and two spinal fusion models using pedicle screw fixation system and a new type of interspinous devices, IPC, were developed. The biomechanical effects such as range of motion (ROM) and facet contact force were analyzed at surgical level (L3/4) and adjacent levels (L2/3, L4/5). In addition, the stress in adjacent intervertebral discs (D2, D4) was investigated. Results : The entire results show biomechanical parameters such as ROM, facet contact force, and stress in adjacent intervertebral discs were similar between PLIF and IPC models in all motions based on the assumption that the implants were perfectly fused with the spine. Conclusion : The newly proposed fusion device, IPC, had similar fusion effect at surgical level, and biomechanical effects at adjacent levels were also similar with those of pedicle screw fixation system. However, for clinical applications, real fusion effect between spinous process and hooks, duration of fusion, and influence on spinous process need to be investigated through clinical study.

초소형 나사의 나사산 각도변화에 따른 체결특성 평가 (Evaluation of Clamping Characteristics for Subminiature Screws According to Thread Angle Variation)

  • 민경빈;김종봉;박근;나승우
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.839-846
    • /
    • 2014
  • Recent trends in the miniaturization and weight reduction of portable electronic parts have driven the use of subminiature screws with a micrometer-scale pitch. As both screw length and pitch decrease in subminiature screws, the resulting clamping force becomes diminishes. In this work, Finite element (FE) analysis is performed to evaluate clamping force of a screw assembly, with a comparison with experimental result. To improve clamping force of subminiature screws, a new screw design is considered by modifying screw thread angle: the thread angle is varied as an asymmetric way unlike the conventional symmetric thread angle. FE analyses are then performed to compare the clamping characteristics of each subminiature screw with different thread angle. The effect of thread angles on the clamping force is then discussed in terms of structural safety for both positive and negative screws.

Biodegradable Screws Containing Bone Morphogenetic Protein-2 in an Osteoporotic Rat Model

  • Jin, Eun-Sun;Kim, Ji Yeon;Lee, Bora;Min, JoongKee;Jeon, Sang Ryong;Choi, Kyoung Hyo;Jeong, Je Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권5호
    • /
    • pp.559-567
    • /
    • 2018
  • Objective : The aim of this study was to evaluate the effect for biodegradable screws containing bone morphogenetic protein-2 (BMP-2) in an osteoporotic rat model. Methods : Twenty-four female Wistar rat (250-300 g, 12 weeks of age) were randomized into four groups. Three groups underwent bilateral ovariectomy (OVX). Biodegradable screws with or without BMP-2 were inserted in the proximal tibia in two implantation groups. The extracted proximal metaphysis of the tibiae were scanned by exo-vivo micro-computed tomography. Evaluated parameters included bone mineral density (BMD), trabecular bone volume (BV/TV), trabecular number, trabecular thickness, and trabecular separation (Tb.Sp). The tibia samples were pathologically evaluated by staining with by Hematoxylin and Eosin, and trichrome. Results : Trabecular formation near screw insertion site was evident only in rats receiving BMP-2 screws. BMD and BV/TV significantly differed between controls and the OVX and OVX with screw groups. However, there were no significant differences between control and OVX with screw BMP groups. Tb.Sp significantly differed between control and OVX and OVX with screw groups (p<0.05), and between the OVX and OVX with screw BMP group (p<0.05), with no statistically significant difference between control and OVX with screw BMP groups. Over the 12 weeks after surgery, bone lamellae in direct contact with the screw developed more extensive and thicker trabecular bone around the implant in the OVX with screw BMP group compared to the OVX with screw group. Conclusion : Biodegradable screws containing BMP-2 improve nearby bone conditions and enhance ostoeintegration between the implant and the osteoporotic bone.

고속 고정밀 볼 스크류 구동에 따른 강제 냉각방식의 효과에 관한 연구 (A Study on Effect of Various Cooling Methods in Motion of High-Precision Ball Screw)

  • 김수상;허철수;김현구;류성기
    • 한국정밀공학회지
    • /
    • 제30권3호
    • /
    • pp.254-259
    • /
    • 2013
  • Ball screw system is widely used as a precision mechanical linear actuator that translates rotational motion to linear motion for its high efficiency, great stiffness and long life. Recently, according to the requirements of high accuracy and stiffness, the pre-load on the ball screw which means of remove the backlash in the ball screw is usually used. Because of the preload which means the frictional resistance between the screw and nut, becomes a dominating heat source and it generates thermal deformation of ball screw which is the reason for low accuracy of the positioning decision. There are several methods to solve the problem that includes temperature control, thermal stable design and error compensation. In the past years, researchers focused on the error compensation technique for its ability to correct ball screw error effectively rather than the capabilities of careful machine design and manufacturing. Significant amounts of researches have been done to real-time error compensation. But in this paper, we developed a series of cooling methods to get thermal equilibrium in the ball screw system. So we find the optimum cooling type for improving positioning error which caused by thermal deformation in the ball screw system.

The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

  • Acar, Nihat;Karakasli, Ahmet;Karaarslan, Ahmet A.;Ozcanhan, Mehmet Hilal;Ertem, Fatih;Erduran, Mehmet
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권5호
    • /
    • pp.425-429
    • /
    • 2016
  • Objective : Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, $20^{\circ}$ kyphotic, and $20^{\circ}$ lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods : The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of $5mm\;min^{-1}$, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of $0.5^{\circ}\;s^{-1}$ to an end point of $5.0^{\circ}$, in a torsion testing machine. Results : Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion : We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.

스크류 제원이 스크류 앵커 파일의 인발저항 특성에 미치는 영향에 관한 축소모형실험 (Effect of Screw Geometries on Pull-out Characteristics of Screw Anchor Piles Using Reduced Scale Model Tests)

  • 유충식
    • 한국지반공학회논문집
    • /
    • 제28권1호
    • /
    • pp.5-15
    • /
    • 2012
  • 본 논문에서는 지하굴착 혹은 절토사면에 적용할 수 있는 스크류 앵커 파일의 인발저항 특성에 관한 연구내용을 제시하였다. 이를 위해 스크류의 크기(직경) 및 피치길이 등 스크류 앵커 파일의 기하적 특성을 달리하는 모형 스크류 앵커 파일을 이용하여 모형실험을 수행하였다. 실험 결과 분석내용을 토대로 할 때 일정한 스크류 크기를 갖는 스크류 앵커 파일의 인발 저항력은 피치길이가 감소할수록 증가하는 것으로 검토 되었다. 또한 일정한 피치길이의 조건에서 스크류 앵커 파일의 인발저항력은 스크류 크기가 증가하면 일정 크기까지는 선형적으로 증가하나 일정 크기 이상에서는 증가량이 거의 일정해지는 것으로 검토 되었다. 본 논문에서는 실험결과를 스크류 앵커 파일의 다양한 제원과 인발저항 특성에 대한 상관관계를 파악할 수 있도록 제시하였으며 연구결과의 실무적 관점에서의 검토 내용을 기술하였다.