현재 국가적 수준에서 과학 데이터세트에 대한 관리체제나 보전을 위한 구체적인 방침이 없다. 그래서 연구 프로젝트를 실시하고 있는 과학자 및 연구그룹들은 데이터세트에 대한 정보의 검색은 물론 공유가 불가능하다. 디지털화된 데이터를 이용하는 연구가 급격히 증가되고 있는 현 상황에서 연구자들 간에 과학데이터를 공유하고 재사용하는 것은 매우 중요하게 인식된다. 따라서 국가수준의 과학데이터 정책수립의 필요성이 대두되고 있다. 본 연구는 외국의 선진사례를 분석함으로써 우리나라의 전략적 계획수립에 있어서 중요한 시사점을 찾는 것이다. 먼저 과학데이터에 대한 일반적 사항과 국가별로 개략적인 과학데이터 정책방향을 살펴본 후 우리나라와 비슷한 정부주도의 집중화된 연구 환경, 연구 지원체제 및 정보서비스 등으로 구성된 오스트레일리아를 대상으로 집중적으로 연구하였다. 구체적으로 ANDS(Australian National Data Service)를 분석하고 우리나라에 적용할 수 있는 시사점들을 도출하였다. 마지막으로 우리나라의 과학데이터 정책수립 사 반영되어야 할 가장 기본적인 원칙 들을 제시한다.
Text mining has become an important research method in biology, with its original purpose to extract biological entities, such as genes, proteins and phenotypic traits, to extend knowledge from scientific papers. However, few thorough studies on text mining and application development, for plant molecular biology data, have been performed, especially for rice, resulting in a lack of datasets available to solve named-entity recognition tasks for this species. Since there are rare benchmarks available for rice, we faced various difficulties in exploiting advanced machine learning methods for accurate analysis of the rice literature. To evaluate several approaches to automatically extract information from gene/protein entities, we built a new dataset for rice as a benchmark. This dataset is composed of a set of titles and abstracts, extracted from scientific papers focusing on the rice species, and is downloaded from PubMed. During the 5th Biomedical Linked Annotation Hackathon, a portion of the dataset was uploaded to PubAnnotation for sharing. Our ultimate goal is to offer a shared task of rice gene/protein name recognition through the BioNLP Open Shared Tasks framework using the dataset, to facilitate an open comparison and evaluation of different approaches to the task.
가시화 도구는 데이터 입출력, 시각적 변환, 상호작용적인 렌더링의 세 구성요소로 구분할 수 있다. 본 논문에서는 거대용량의 과학 데이터를 실시간으로 가시화하기 위해 가시화 도구의 세 구성요소에 대한 요구사항을 분석, 정의하고 이를 만족시키기 위한 방안을 제시하고자 한다. 특히, 효율적인 가시화 도구의 개발을 위해 공개 소프트웨어 도구를 최대한 활용하고자 하였으며, 서로 다른 용도로 개발된 각 공개 소프트웨어 도구를 통합하여 하나의 가시화 도구로 개발하는 방안과 시공간적인 과학 데이터의 실시간 가시화를 위한 최적화 방법에 대해 논한다. 이를 통해 분산공유메모리 기반의 과학 데이터 병렬 가시화 도구인 GLOVE를 제안하였으며, 유동해석 분야 과학 데이터를 이용한 실험을 통해 GLOVE와 다른 데이터 가시화 소프트웨어와의 성능을 비교 분석했다.
This paper briefly introduces the work done up to 1998 during the past twenty years for numerical modeling of ocean process focussing on the neighbouring seas of Korean Peninsula. Modeling of global ocean dynamics has also been performed as a pathway to understand the regional ocean dynamics. The ocean simulation produces a vast amount of multidimensional multivariate dataset therefore adoption of scientific and technical visualization techniques were essential to properly understand the physics involved.
오늘날 폭발적인 정보의 증가로 이용자들은 자신이 원하는 정보를 찾기 위해 엄청난 시간과 노력을 기울여야 한다. 이 문제를 해결하기 위하여 이용자의 정보요구를 분석하고 이용자에게 적합한 논문을 추천해주는 논문추천시스템이 등장하고 있다. 그러나 대부분의 논문추천시스템은 논문추천시스템의 핵심인 이용자 프로파일을 간과하고 있다. 따라서 이 연구는 논문추천시스템의 성능을 좌우하는 이용자 프로파일을 기존의 평균으로 계산하지 않고 새로운 TPIPF(Topic Proportion-Inverse Paper Frequency)로 계산하는 방법을 제안하였다. 제안된 방법과 기존의 방법을 모두 논문추천시스템에 적용하여 각각의 성능을 온라인 참고문헌 관리도구인 CiteULike에서 제공된 데이터 실험을 통하여 비교하였다. 그 결과 제안된 TPIPF 방법을 적용한 논문추천시스템의 성능이 더 높다는 것을 알 수 있었다.
International Journal of Computer Science & Network Security
/
제22권2호
/
pp.1-8
/
2022
This work provides a reliable and classified stocks dataset merged with Saudi stock news. This dataset allows researchers to analyze and better understand the realities, impacts, and relationships between stock news and stock fluctuations. The data were collected from the Saudi stock market via the Corporate News (CN) and Historical Data Stocks (HDS) datasets. As their names suggest, CN contains news, and HDS provides information concerning how stock values change over time. Both datasets cover the period from 2011 to 2019, have 30,098 rows, and have 16 variables-four of which they share and 12 of which differ. Therefore, the combined dataset presented here includes 30,098 published news pieces and information about stock fluctuations across nine years. Stock news polarity has been interpreted in various ways by native Arabic speakers associated with the stock domain. Therefore, this polarity was categorized manually based on Arabic semantics. As the Saudi stock market massively contributes to the international economy, this dataset is essential for stock investors and analyzers. The dataset has been prepared for educational and scientific purposes, motivated by the scarcity of data describing the impact of Saudi stock news on stock activities. It will, therefore, be useful across many sectors, including stock market analytics, data mining, statistics, machine learning, and deep learning. The data evaluation is applied by testing the data distribution of the categories and the sentiment prediction-the data distribution over classes and sentiment prediction accuracy. The results show that the data distribution of the polarity over sectors is considered a balanced distribution. The NB model is developed to evaluate the data quality based on sentiment classification, proving the data reliability by achieving 68% accuracy. So, the data evaluation results ensure dataset reliability, readiness, and high quality for any usage.
As Deepfakes phenomenon is spreading worldwide mainly through videos in web platforms and it is urgent to address the issue on time. More recently, researchers have extensively discussed deepfake video datasets. However, it has been pointed out that the existing Deepfake datasets do not properly reflect the potential threat and realism due to various limitations. Although there is a need for research that establishes an agreed-upon concept for high-quality datasets or suggests evaluation criterion, there are still handful studies which examined it to-date. Therefore, this study focused on the development of the evaluation criterion for the Deepfake video dataset. In this study, the fitness of the Deepfake dataset was presented and evaluation criterions were derived through the review of previous studies. AHP structuralization and analysis were performed to advance the evaluation criterion. The results showed that Facial Expression, Validation, and Data Characteristics are important determinants of data quality. This is interpreted as a result that reflects the importance of minimizing defects and presenting results based on scientific methods when evaluating quality. This study has implications in that it suggests the fitness and evaluation criterion of the Deepfake dataset. Since the evaluation criterion presented in this study was derived based on the items considered in previous studies, it is thought that all evaluation criterions will be effective for quality improvement. It is also expected to be used as criteria for selecting an appropriate deefake dataset or as a reference for designing a Deepfake data benchmark. This study could not apply the presented evaluation criterion to existing Deepfake datasets. In future research, the proposed evaluation criterion will be applied to existing datasets to evaluate the strengths and weaknesses of each dataset, and to consider what implications there will be when used in Deepfake research.
스트림라인 생성은 유동해석 데이터에서 유동의 흐름을 해석하기 위한 대표적인 가시화 기법이다. 그러나 효과적인 스트림라인 배치를 위한 씨드 포인트의 위치를 결정하는 것은 매우 어려운 문제이다. 한편, 대용량의 유동해석 데이터에서 씨드 포인트 결정과 스트림라인 생성 계산은 매우 오랜 시간을 필요로 한다. 본 논문에서는 효과적인 스트림라인 배치를 위해 유동해석 데이터의 중요도를 기반으로 한 씨드 포인트 결정 방법과 분산병렬 가시화 시스템 환경에서의 병렬 처리 기법을 제안한다. 또한, GLOVE 가시화 시스템에서 실제 유동해석 데이터를 이용한 구현 결과를 소개하고 이를 통해 본 논문의 제안 방법을 검증하고자 한다.
This paper focuses on the relationship between the characteristics of network and the productivity of scientists, which is rarely examined in previous studies. Utilizing a unique dataset from the Korean Citation Index (KCI), we examine the overall characteristics of the research network (e.g. distribution of nodes, density and mean distance), and analyze whether the network centrality is related to the scientific productivity. According to the results, firstly we have found that the collaborative research network of the Korean academics in the field of statistics and computer science is a scale-free network. Secondly, these research networks show a disciplinary difference. The network of statisticians is denser than that of computer scientists. In addition, computer scientists are located in a fragmented network compared to statisticians. Thirdly, with regard to the relationship between the researchers' network position and scientific productivity, a significant relation and their disciplinary difference have been observed. In particular, the degree centrality is the strongest predictor for the scientists' productivity. Based on these findings, some policy implications are put forward.
The national accuracy of global land cover (GLC) products is of great importance to ecological and environmental research. However, GLC products that are derived from different satellite sensors, with differing spatial resolutions, classification methods, and classification schemes are certain to show some discrepancies. The goal of this study is to assess the accuracy of four commonly used GLC datasets in South Korea, GLC2000, GlobCover2009, MCD12Q1, and GlobeLand30. First, we compared the area of seven classes between four GLC datasets and a reference dataset. Then, we calculated the accuracy of the four GLC datasets based on an aggregated classification scheme containing seven classes, using overall, producer's and user's accuracies, and kappa coefficient. GlobeLand30 had the highest overall accuracy (77.59%). The overall accuracies of MCD12Q1, GLC2000, and GlobCover2009 were 75.51%, 68.38%, and 57.99%, respectively. These results indicate that GlobeLand30 is the most suitable dataset to support a variety of national scientific endeavors in South Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.