• Title/Summary/Keyword: Schottky mechanism

Search Result 71, Processing Time 0.029 seconds

Schottky Contact Application을 위한 Yb Germanides 형성 및 특성에 관한 연구

  • Na, Se-Gwon;Gang, Jun-Gu;Choe, Ju-Yun;Lee, Seok-Hui;Kim, Hyeong-Seop;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.399-399
    • /
    • 2013
  • Metal silicides는 Si 기반의microelectronic devices의 interconnect와 contact 물질 등에 사용하기 위하여 그 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 이 중 Rare-earth(RE) silicides는 저온에서 silicides를 형성하고, n-type Si과 낮은 Schottky Barrier contact (~0.3 eV)을 이룬다. 또한 낮은 resistivity와 Si과의 작은 lattice mismatch, 그리고 epitaxial growth의 가능성, 높은 thermal stability 등의 장점을 갖고 있다. RE silicides 중 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 n-channel schottky barrier MOSFETs의 source/drain으로 주목받고 있다. 또한 Silicon 기반의 CMOSFETs의 성능 향상 한계로 인하여 germanium 기반의 소자에 대한 연구가 이루어져 왔다. Ge 기반 FETs 제작을 위해서는 낮은 source/drain series/contact resistances의 contact을 형성해야 한다. 본 연구에서는 저접촉 저항 contact material로서 ytterbium germanide의 가능성에 대해 고찰하고자 하였다. HRTEM과 EDS를 이용하여 ytterbium germanide의 미세구조 분석과 면저항 및 Schottky Barrier Heights 등의 전기적 특성 분석을 진행하였다. Low doped n-type Ge (100) wafer를 1%의 hydrofluoric (HF) acid solution에 세정하여 native oxide layer를 제거하고, 고진공에서 RF sputtering 법을 이용하여 ytterbium 30 nm를 먼저 증착하고, 그 위에 ytterbium의 oxidation을 방지하기 위한 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, rapid thermal anneal (RTA)을 이용하여 N2 분위기에서 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium germanides를 형성하였다. Ytterbium germanide의 미세구조 분석은 transmission electron microscopy (JEM-2100F)을 이용하였다. 면 저항 측정을 위해 sulfuric acid와 hydrogen peroxide solution (H2SO4:H2O2=6:1)에서 strip을 진행하여 TiN과 unreacted Yb을 제거하였고, 4-point probe를 통하여 측정하였다. Yb germanides의 면저항은 열처리 온도 증가에 따라 감소하다 증가하는 경향을 보이고, $400{\sim}500^{\circ}C$에서 가장 작은 면저항을 나타내었다. HRTEM 분석 결과, deposition 과정에서 Yb과 Si의 intermixing이 일어나 amorphous layer가 존재하였고, 열처리 온도가 증가하면서 diffusion이 더 활발히 일어나 amorphous layer의 두께가 증가하였다. $350^{\circ}C$ 열처리 샘플에서 germanide/Ge interface에서 epitaxial 구조의 crystalline Yb germanide가 형성되었고, EDS 측정 및 diffraction pattern을 통하여 안정상인 YbGe2-X phase임을 확인하였다. 이러한 epitaxial growth는 면저항의 감소를 가져왔으며, 열처리 온도가 증가하면서 epitaxial layer가 증가하다가 고온에서 polycrystalline 구조의 Yb germanide가 형성되어 면저항의 증가를 가져왔다. Schottky Barrier Heights 측정 결과 또한 면저항 경향과 동일하게 열처리 증가에 따라 감소하다가 고온에서 다시 증가하였다.

  • PDF

Influence of the Optical Characteristics and Conductive Mechanism depending on the Deposition Condition of BCP (BCP의 증착 조건에 따른 광학적 특성 및 전도 기구에 미치는 영향)

  • Kim, Weon-Jong;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.980-986
    • /
    • 2009
  • In a triple-layered structure of ITO/N,N'-diph enyl-N,N'bis(3-methylphenyl)-1,1' - biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline)aluminum($Alq_3$)/(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCP)/Al device, we have studied the electrical and optical characteristics of organic light-emitting diodes(OLEDs) depending on the deposition condition of BCP layer. Several different sizes of holes on boat and several different deposition rates were employed in evaporating the organic materials. And then, electrical properties of the organic light-emitting diodes were measured and the performance of the devices was analyzed. It was found that the hole-size of crucible boat and the evaporation rate affect on the surface roughness of BCP layer as well as the performance of the device. When the hole-size of crucible boat and the deposition rate of BCP are 1.2 mm and $1.0\;{\AA}/s$, respectively, average surface roughness of BCP layer is lower and the efficiency of the device is higher than the ones made with other conditions. From the analysis of current density-luminance-voltage characteristics of a triple layered device, we divided the conductive mechanism by four region according to applied voltage. So we have obtained a coefficient of ${\beta}_{ST}$ in schottky region is $3.85{\times}10^{-24}$, a coefficient of ${\beta}_{PF}$ in Poole-Frenkel region is $7.35{\times}10^{-24}$, and a potential barrier of ${\phi}_{FN}$ in Fower-Nordheim region is 0.39 eV.

Resistance Switching Characteristics of Binary $SiO_2\;and\;TiO_2$ Films (이원계 $SiO_2$$TiO_2$ 박막의 저항 변화 특성)

  • Park In-Sung;Kim Kyong-Rae;Ahn Jin-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.2 s.39
    • /
    • pp.15-19
    • /
    • 2006
  • The resistance switching characteristics of amorphous $SiO_2$ and poly-crystalline $TiO_2$ were investigated. Both films exhibit well defined switching characteristics with low and high resistance states. From I-V curve analyses, it was found that the low resistance states of both films obey an ohmic conduction mechanism and the high resistance states show generation of a Schottky potential barrier. Regarding the mechanism for resistance switching of the binary oxide, it is suggested that the generation and annihilation of potential barriers accounts for the changes to the high resistance state and low resistance state, respectively. The device operation characteristic parameters such as reset and set voltages of $TiO_2$ are distinctly smaller than those of $SiO_2$, indicating that the values are related to the dielectric constant.

  • PDF

Power Generating Characteristics of Zinc Oxide Nanorods Grown on a Flexible Substrate by a Hydrothermal Method

  • Choi, Jae-Hoon;You, Xueqiu;Kim, Chul;Park, Jung-Il;Pak, James Jung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.640-645
    • /
    • 2010
  • This paper describes the power generating property of hydrothermally grown ZnO nanorods on a flexible polyethersulfone (PES) substrate. The piezoelectric currents generated by the ZnO nanorods were measured when bending the ZnO nanorod by using I-AFM, and the measured piezoelectric currents ranged from 60 to 100 pA. When the PtIr coated tip bends a ZnO nanorod, piezoelectrical asymmetric potential is created on the nanorod surface. The Schottky barrier at the ZnO-metal interface accumulates elecntrons and then release very quickly generating the currents when the tip moves from tensile to compressed part of ZnO nanorod. These ZnO nanorods were grown almost vertically with the length of 300-500 nm and the diameter of 30-60 nm on the Ag/Ti/PES substrate at $90^{\circ}C$ for 6 hours by hydrothermal method. The metal-semiconductor interface property was evaluated by using a HP 4145B Semiconductor Parameter Analyzer and the piezoelectric effect of the ZnO nanorods were evaluated by using an I-AFM. From the measured I-V characteristics, it was observed that ZnO-Ag and ZnO-Au metal-semiconductor interfaces showed an ohmic and a Schottky contact characteristics, respectively. ANSYS finite element simulation was performed in order to understand the power generation mechanism of the ZnO nanorods under applied external stress theoretically.

Atmospheric Effects on Growth Kinetics and Electronic Properties of Passive Film of Aluminum in Borate Buffer Solution (Borate 완충용액에서 알루미늄의 산화피막의 생성과정과 전기적 성질에 대한 대기의 영향)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.169-176
    • /
    • 2016
  • In a borate buffer solution, the growth kinetics and the electronic properties of passive film on aluminum were investigated, using the potentiodynamic method, chronoamperometry, and multi-frequency electrochemical impedance spectroscopy. The corrosion of aluminum was heavily influenced by the degree of oxygen concentration because of the increasing reduction current. The oxide film formed during the passivation process of aluminum has showed the electronic properties of n-type semiconductor, which follow from the Mott-Schottky equation. It was found out that the passive film (Al(OH)3) of Al formed in the low electrode potential changes to Al2O3 while the electrode potential increases. The growth kinetics data as measured by chronoamperometry suggests a mechanism in which the growth of the film of Al2O3 is determined by field-assisted transport of ions through the film.

정공 수송 재료인 TPD의 전기 전도 특성

  • Kim, Won-Jong;Choe, Hyeon-Min;Lee, Jong-Yong;Choe, Gwang-Jin;Hong, Jin-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.170-170
    • /
    • 2009
  • From the analysis of current density-luminance-voltage characteristics of the double layered device in ITO/N,N'-diphenyl-N-N'bis(3-methylphenyl)-1,1'biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline)aluminum($Alq_3$)/Al, we divided the conductive mechanism by four region according to applied voltage. We have obtained a coefficient of ${\beta}_{ST}$ in schottky region (I) is $4.14{\times}10^{-24}$ at the electric field of $3.2{\times}10^5$ V/cm, a slope in negative resistance region (II) appears negative properties decreasing the current density J for proportional in -1.58 square at a electric field of $7.3{\times}10^5$ V/cm. A coefficient of ${\beta}_{PF}$ in Poole-Frenkel region (III) is $8.28{\times}10^{-24}$ at the electric field of $8.4{\times}10^5$ V/cm, it was confirm어 that ${\beta}_{PF}$ is agrees with a value that relates with ${\beta}_{ST}$ such as ${\beta}_{PF}=2{\beta}_{ST}$ as the ${\beta}_{PF}$ and 2 ${\beta}_{ST}$ satisfied a theoretical prediction. And it was obtained a potential barrier of ${\Phi}_{FN}$ in Fower-Nordheim region(IV) is 0.3 eV at the electric field of $11.2{\times}10^5$ V/cm.

  • PDF

Characterization of the Schottky Barrier Height of the Pt/HfO2/p-type Si MIS Capacitor by Internal Photoemission Spectroscopy (내부 광전자방출 분광법을 이용한 Pt/HfO2/p-Si Metal-Insulator-Semiconductor 커패시터의 쇼트키 배리어 분석)

  • Lee, Sang Yeon;Seo, Hyungtak
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • In this study, we used I-V spectroscopy, photoconductivity (PC) yield and internal photoemission (IPE) yield using IPE spectroscopy to characterize the Schottky barrier heights (SBH) at insulator-semiconductor interfaces of Pt/$HfO_2$/p-type Si metal-insulator-semiconductor (MIS) capacitors. The leakage current characteristics of the MIS capacitor were analyzed according to the J-V and C-V curves. The leakage current behavior of the capacitors, which depends on the applied electric field, can be described using the Poole-Frenkel (P-F) emission, trap assisted tunneling (TAT), and direct tunneling (DT) models. The leakage current transport mechanism is controlled by the trap level energy depth of $HfO_2$. In order to further study the SBH and the electronic tunneling mechanism, the internal photoemission (IPE) yield was measured and analyzed. We obtained the SBH values of the Pt/$HfO_2$/p-type Si for use in Fowler plots in the square and cubic root IPE yield spectra curves. At the Pt/$HfO_2$/p-type Si interface, the SBH difference, which depends on the electrical potential, is related to (1) the work function (WF) difference and between the Pt and p-type Si and (2) the sub-gap defect state features (density and energy) in the given dielectric.

Effect of Hydrogen on leakage current characteristics of (Pb, La) (Zr, Ti )$O_3$(PLZT) thin film capacitors with Pt or Ir-based top electrodes (Pt 또는 Ir 계열의 상부전극을 갖는 (Pb, La) (Zr, Ti)$O_3$ (PLZT) 박막의 누설전류특성에 미치는 수소 열처리의 효과)

  • Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.151-154
    • /
    • 2001
  • The leakage current behaviors of PLZT capacitors with top electrodes of Pt, Ir, and $IrO_2$ are investigated before and after hydrogen forming gas anneal. The P-E hysteresis and fatigue properties of Pt/PLZT/Pt capacitors are almost recovered after recovery anneal in $O_2$ ambient. The leakage current mechanisms of PLZT capacitors with Pt and $IrO_2$ top electrodes are consistent with space-charge influenced injection model showing the strong time dependence irrespective of annealing conditions. On the other hand, the leakage current behavior of Ir/PLZT/Pt capacitor shows steady state independent of time because IrPb, conducting phase, formed at interface between Ir top and PLZT is a high conduction path. Teh leakage current mechanism of Ir/PLZT/Pt capacitor is consistent with Schottky barrier model.

  • PDF

Dielectric property and conduction mechanism of ultrathin zirconium oxide films

  • Chang, J.P.;Lin, Y.S.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.61.1-61
    • /
    • 2003
  • Stoichiometric, uniform, amorphous ZrO$_2$ films with an equivalent oxide thickness of ∼1.5nm and a dielectric constant of ∼18 were deposited by an atomic layer controlled deposition process on silicon for potential application in meta-oxide-semiconductor(MOS) devices. The conduction mechanism is identified as Schottky emission at low electric fields and as Poole-Frenkel emission at high electric fields. the MOS devices showed low leakage current, small hysteresis(〈50mV), and low interface state density(∼2*10e11/cm2eV). Microdiffraction and high-resolution transmission electron microscopy showed a localized monoclinic phase of ${\alpha}$-ZrO$_2$ and an amorphous interfacial ZrSi$\_$x/O$\_$y/ layer which has a correspondign dielectric constant of 11

  • PDF

Gate Leakage Current Characteristics of GaAs MESFETS′ with different Temperature (GaAs MESFET의 온도변화에 다른 게이트 누설전류 특성)

  • 원창섭;김시한;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.50-53
    • /
    • 2001
  • In this study, gate leakage current mechanism has been analyzed for GaAs MESFET with different temperatures ranging from 27$^{\circ}C$ to 300$^{\circ}C$ . It is expected that the thermionic and field emission at the MS contact will dominate the current flow. Thermal cycle is applied to test the reliability of the device. From the results, it is proved that thermal stress gradually increases the gate leakage current at the same bias conditions and leads to the breakdown and failure mechanism which is critical in the field equipment. Finally the gate contact under the repeated thermal shock has been tested to check the quality of Schottky barrier and the current will be expressed in the analytical from to associate with the electrical characteristics of the device.

  • PDF