• Title/Summary/Keyword: Schedule Model

Search Result 718, Processing Time 0.025 seconds

An Integrated Cost and Schedule Control Process Model Using Earned Value Management System (EVMS를 활용한 공정-공사비 통합관리 프로세스모델)

  • Baek Seung-ho;Kim kyung-rai;Lee Yu-Seb;Lee yong-gyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.2 s.2
    • /
    • pp.89-97
    • /
    • 2000
  • This research has been Initiated to provide an effective management tool for budget control of the public projects using EVMS. Barriers to implementing the tool for the domestic public projects are identified : no PMB (Performance Measurement Baseline) for budget control, management by BOQ(bill of quantity), no systematic planning and control. To eliminate these barriers, an integrated cost and schedule management process model using EVMS is proposed. This model is composed of six sub processes : organizing, scheduling, budget allocating, establishing PMB, managerial analysis, change incorporation.

  • PDF

Approximate Estimating of Plant Construction Duration Using a Standard Schedule Model (초기 사업단계에서 표준공정모델을 이용한 가스 플랜트 공사의 개략적 공사기간 산정)

  • Moon, Sung-Woo;Park, Sang-Chun;Kwon, Ki-Nam
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.2
    • /
    • pp.26-33
    • /
    • 2009
  • The required level of detail in scheduling depends on the stages in the construction life-cycle. The objective of this study is to provide a Standardized Schedule Model (SSM) with an aim to facilitate the estimating of construction duration in the planning stage. The SSM modularizes work items; establishes relations between preceding and succeeding activities; and calculates approximate construction duration. The estimated duration of the SSM was compared with the detailed duration from the commercial scheduling tool using actual work activities. The difference showed to be ranged between -3.1% and +15%, which demonstrates that the SSM can be feasibly applied to the approximate estimation of construction duration.

Development of Decision Model and Management System to minimize Pavement Utility Cut for Road Facility (도로시설 재굴착 방지를 위한 의사결정모델 및 관리시스템 개발)

  • Cho, Jin-Young;Jang, Oun-Sung;Lee, Min-Jae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.164-171
    • /
    • 2013
  • In urban planning, road facility is used not only for the transportation purpose but also for the utility line space purpose such as electrical, gas, tele communication, heating, water, sewer, and so on. However, since these utilities are built by many different groups, it becomes very difficult to communicate each other. Delay in one party can cause another party's schedule delay but they don't commuicate often. Also, some delay in utility work can cause frequent pavement cut. And, this will impact on construction cost, schedule delay, low quality, user complain and cost. This study developed spatiotemporal decision model to prevent prequent utility cut for mega project such as new urban development project. In addition, this study developed utility cut management system to manage utility cut schedule under pavement. Finally, developed system was applied to new urban development project and verified there effectiveness.

Advanced Alignment-Based Scheduling with Varying Production Rates for Horizontal Construction Projects

  • Greg Duffy;Asregedew Woldesenbet;David Hyung Seok Jeong;Garold D. Oberlender
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.403-411
    • /
    • 2013
  • Horizontal construction projects such as oil and gas pipeline projects typically involve repetitive-work activities with the same crew and equipment from one end of the project to the other. Repetitive scheduling also known as linear scheduling is known to have superior schedule management capabilities specifically for such horizontal construction projects. This study discusses on expanding the capabilities of repetitive scheduling to account for the variance in production rates and visual representation by developing an automated alignment based linear scheduling program for applying temporal and spatial changes in production rates. The study outlines a framework to apply changes in productions rates when and where they will occur along the horizontal alignment of the project and illustrates the complexity of construction through the time-location chart through a new linear scheduling model, Linear Scheduling Model with Varying Production Rates (LSMVPR). The program uses empirically derived production rate equations with appropriate variables as an input at the appropriate time and location based on actual 750 mile natural gas liquids pipeline project starting in Wyoming and terminating in the center of Kansas. The study showed that the changes in production rates due to time and location resulted in a close approximation of the actual progress of work as compared to the planned progress and can be modeled for use in predicting future linear construction projects. LSMVPR allows the scheduler to develop schedule durations based on minimal project information. The model also allows the scheduler to analyze the impact of various routes or start dates for construction and the corresponding impact on the schedule. In addition, the graphical format lets the construction team to visualize the obstacles in the project when and where they occur due to a new feature called the Activity Performance Index (API). This index is used to shade the linear scheduling chart by time and location with the variation in color indicating the variance in predicted production rate from the desired production rate.

  • PDF

An Effective Two-Step Model for Speech Act Analysis in a Schedule Management Domain (일정 관리 영역에서의 화행 분석을 위한 효과적인 2단계 모델)

  • Lee, Hyun-Jung;Kim, Hark-Soo;Seo, Jung-Yun
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.3
    • /
    • pp.297-310
    • /
    • 2008
  • Since speech acts implies speakers' intentions, it is essential to determine speakers' speech acts if we want to implement an intelligent dialogue system. We propose a two-step model for effectively determining speakers' speech acts. In the first step, the proposed model returns speech act candidates by using a neural network model based on machine learning and a predictivity model based on statistics, respectively. In the second step, using speech act candidates which are returned by the predictivity model, the proposed model filters out speech act candidates which are returned by the neural network model. Then, the proposed model selects a speech act with maximum output value among the unremoved speech act candidates. In the experiment on a schedule management domain, the proposed two-step modeling method showed better precisions than the previous methods only using a machine learning model or a probability model.

  • PDF

Development and Evaluation of Model-based Predictive Control Algorithm for Effluent $NH_4-N$ in $A^2/O$ Process ($A^2/O$ 공정의 유출수 $NH_4-N$에 대한 모델기반 예측 제어 알고리즘 개발 및 평가)

  • Woo, Dae-Joon;Kim, Hyo-Soo;Kim, Ye-Jin;Cha, Jae-Hwan;Choi, Soo-Jung;Kim, Min-Soo;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • In this study, model-based $NH_4-N$ predictive control algorithm by using influent pattern was developed and evaluated for effective control application in $A^2/O$ process. A pilot-scale $A^2/O$process at S wastewater treatment plant in B city was selected. The behaviors of organic, nitrogen and phosphorous in the biological reactors were described by using the modified ASM3+Bio-P model. A one-dimensional double exponential function model was selected for modeling of the secondary settlers. The effluent $NH_4-N$ concentration on the next day was predicted according to model-based simulation by using influent pattern. After the objective effluent quality and simulation result were compared, the optimal operational condition which able to meet the objective effluent quality was deduced through repetitive simulation. Next the effluent $NH_4-N$ control schedule was generated by using the optimal operational condition and this control schedule on the next day was applied in pilot-scale $A^2/O$ process. DO concentration in aerobic reactor in predictive control algorithm was selected as the manipulated variable. Without control case and with control case were compared to confirm the control applicability and the study of the applied $NH_4-N$control schedule in summer and winter was performed to confirm the seasonal effect. In this result, the effluent $NH_4-N$concentration without control case was exceeded the objective effluent quality. However the effluent $NH_4-N$ concentration with control case was not exceeded the objective effluent quality both summer and winter season. As compared in case of without predictive control algorithm, in case of application of predictive control algorithm, the RPM of air blower was increased about 9.1%, however the effluent $NH_4-N$ concentration was decreased about 45.2%. Therefore it was concluded that the developed predictive control algorithm to the effluent $NH_4-N$ in this study was properly applied in a full-scale wastewater treatment process and was more efficient in aspect to stable effluent.

A Multiproduct Facility-in-Series Production Planning Model

  • Sung, C.S.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.9 no.2
    • /
    • pp.15-22
    • /
    • 1984
  • A deterministic multiproduct, facility-in series multiperiod production planning model is analyzed, where each period demand for the product of a facility appear in a fixed proportion of that for the product of the immediately following facility. The model considers concave production and inventory costs, which can depend upon the production in different facilities. No backlogging is allowed. It is shown that the model is represented via a single source network, which facilitates development of efficient dynamic programming algorithms for computing the optimal production schedule.

  • PDF

Development of CPAM(Construction Process Analysis Model) based on Lean Construction Principles (린 건설 원리에 기초한 건설 생산 공정 분석 모델에 관한 연구)

  • Kim Chan Hun;Kim Chang Duk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.4 s.8
    • /
    • pp.48-61
    • /
    • 2001
  • This study aims at improving work reliability. It proposes a way to overcome the limitations of current scheduling methods by providing a new framework, CPAM(Construction Process Analysis Model) based on the lean principles. It suggests methods which improve work reliability and production effectiveness with variability control methods. Also it suggests methods which reduce inventories of materials and equipment and WIP(Work In Process) using two techniques; Lookahead Schedule and Weekly Work Plan. The contribution of this research also includes that it assumes planning as a process of reducing uncertainty and maximizing throughput, counter-posing plan reliability to resource redundancy as alternative strategies for managing in conditions of uncertain work flow.

  • PDF

Avionics Software Data Modeling Method and Test For FACE Conformance (FACE 적합성을 위한 항공전자 소프트웨어 데이터 모델링 방안 및 검증)

  • Kyeong-Yeon, Cho;Doo-Hwan, Lee;Sang-Cheol, Cha;Jeong-Yeol, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.45-53
    • /
    • 2022
  • The avionics industry has recently adopted an open architecture to increase software portability and reduce the development schedule and cost associated with changing hardware equipment. This paper presents a data modeling method compliant with FACE, a widely used open avionics architecture. A FACE data model is designed and implemented to output data from VOR/ILS avionics equipment. A FACE Conformance Test Suite (CTS) program is utilised to verify that the data model meets FACE standards. The proposed data modeling method is expected to improve the development schedule and cost associated with modifying communication methods and ICDs (Interface Control Documents).

DEVELOPMENT OF BUILDING INFORMATION MODEL FOR RESOURCES OPTIMIZATION IN CONSTRUCTION PROJECT

  • Gopal M. Naik;Rokhsareh Badamahgan
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.634-639
    • /
    • 2013
  • The aim of the study is to develop the 3D visualization of Building Information Model and integrated 4D model for optimization of resources in the construction project. This study discuss the process of methodology and creation of 4D model of the project and simulate it to monitor the workflow at the site. Different stages of the construction process and activities are generated by using Revit and MS Project. MS project has been used for creation of the schedules and these are linked with the Revit for 3D modeling. The time used as the fourth dimension and 4D model created by using Navisworks Time liner software. Narges shopping center is presented as a case study to realize the actual uses and benefits of Building Information Model (BIM). Narges shopping mall is located in Tehran, Iran. As a part of Hekmat master plan, Narges shopping center is an 11 stores building with a total area of 30000 Sq.m. This shopping and entertainment center is comprised of 150 retails and two multi-use public halls with a capacity of 400 persons each and underground parking with total 400 parking space. The main purpose of architecture was to create an urban public center along with its revolving, spiral like form and an ever changing continuous façade by means of different colors, materials, which is in harmony with the other building of the master plan. The approximate cost of the project is $17 million and duration of the project schedule is 30 months. The developed Building Information Model enabled us to identify the potential collisions or clashes between various structural and architectural systems. 4D model has been used for limiting the interaction between subcontractors installing the different systems so rework could be avoided and productivity maximized. It is also observed that the utility of BIM for construction stimulation and clash detection is the best suitable method. Clash detection before the implementation of work is highly recommended to avoid rework.

  • PDF