Wavelet transform technique is applied to two important electromagnetic problems:1) to analyze the frequency-domain radar echo from finite-size targets and 2) to the integral solution of two- dimensional electromagnetic scattering problems. Since the frequency- domain radar echo consists of both small-scale natural resonances and large-scale scattering center information, the multiresolution property of the wavelet transform is well suited for analyzing such ulti-scale signals. Wavelet analysis examples of backscattered data from an open- ended waveguide cavity are presented. The different scattering mechanisms are clearly resolved in the wavelet-domain representation. In the wavelet transform domain, the moment method impedance matrix becomes sparse and sparse matrix algorithms can be utilized to solve the resulting matrix equationl. Using the fast wavelet transform in conjunction with the conjugate gradient method, we present the time performance for the solution of a dihedral corner reflector. The total computational time is found to be reduced.
This paper deals with a hybrid finite element method for wave scattering problems in infinite domains. Scattering of waves involving complex geometries, in conjunction with infinite domains is modeled by introducing a mathematical boundary within which a finite element representation is employed. On the mathematical boundary, the finite element representation is matched with a known analytical solution in the infinite domain in terms of fields and their derivatives. The derivative continuity is implemented by using a slope constraint. Drilling degrees of freedom at each node of the finite element model are introduced to make the numerical model more sensitive to the transverse component of the elastodynamic field. To verify the effects of drilling degrees freedom and slope constraints individually, reflection of normally incident P and SV waves on a traction free half spaces is considered. For the P-wave incidence, the results indicate that the use of slope constraint is more effective because it suppresses artificial reflection at the mathematical boundary. For the SV-wave case, the use of drilling degrees freedom is more effective by reducing numerical error at irregular frequencies.
Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates ($S_N$) or spherical-harmonics ($P_N$) solve to accelerate convergence of a high-order $S_N$ source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergence of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.
기존의 공진산란이론에서는 하나의 모드에 대한 부분파 산란장이 주파수에 대하여 급격히 변하는 공진성분과 서서히 변하는 배경성분의 합으로 이루어졌다고 가정하고 적당한 배경성분을 제거하여 공진성분을 추출했다. 최근에 음향학 분야에서 산란 5-함수의 곱셈전개에 근거를 둔 새로운 공진 산란이론이 개발되어 왔다. 산란장이 공진성분과 배경성분 이외에 이들의 상호간섭성분으로 구성되어 있다고 제안한 이 이론은 공진성분의 크기뿐만 아니라 위상스펙트럼을 정확하게 얻게 해 주었다. 전자기파 분야에서는 유전체로 코팅된 도체 구 혹은 원통의 산란문제에 이 이론이 성공적으로 적용되었다. 본 논문에서는 유전체 실린더의 전자기파의 산란문제로 이 이론을 확장하고 수치계산으로 그 유효성을 검증했다.
한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
/
pp.504-509
/
1998
A new method is proposed for the isolation of resonances from scattered waves for acoustic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Acoustic wave scattering from a variety of submerged bodies is numerically analyzed. The classical resonance scattering theory (RST) and the new method compute identical magnitude of the resonance from each scattered partial wave, however, the phases are significantly different. The exact .pi.-radians phase shifts through the resonance and anti-resonance show that the proposed method properly extracts the vibrational resonance information of the scatterer. Due to the difference in the phase of each, partial wave, the new method and RST generate different total resonance spectra.
본 논문에서는 유한 고체내 초음파 전파 및 산란 현상의 해석을 위한 다양한 경계요소 모델링 기법이 제시되었다. 박판 재료내 유도초음파 전파에 대한 모드해석을 위해 비균질 적충 박판 구조물에 대한 탄성동역학 경계치 문제가 설정되었으며 이에 대한 수치해로부터 유도초음파의 전파특성을 나타내는 분산곡선이 얻어졌다. 파동 산란시 발생되는 기하학적 복잡성과 모드변환 문제를 수치적으로 모델링하기 위해 탄성 동역학 경계요소법을 적용하였고 이를 박판내 유도초음파의 이론적 직교 모드의 중첩해와 결합시킨 혼합형 경계요소법으로 확장하여 유한 고체내 다중 모드변환의 효율적 모델링법이 제안되었다. 주파수 영역의 수치해로부터 시간 의존 문제의 파동신호 예측을 위해 역 푸리에(Fourier) 변환을 통한 시간 영역 파동산란 신호가 얻어졌다. 이와 함께 실제 초음파 탐상조건에 보다 가까운 파동산란 문제의 모델링을 위해 3차원 경계요소법을 소개하고, 개발중인 3차원 경계요소 프로그램을 이용하여 유한 직경을 갖는 봉재내의 파동 전파를 수치적으로 해석하여 해석해와 비교 검증하였다. 본 논문에서 제시된 탄성파동 모델링 기법은 정량적 비파괴 평가법을 확립하는데 다양하게 응용될 수 있을 것으로 기대된다.
본 논문은 integral equation-fast Fourier transform(IE-FFT)과 block matrix preconditioner(BMP)를 이용하여 침투 가능한 구조물의 전자기 산란 문제를 다룬다. IE-FFT는 모멘트 법(the method of Moments : MoM)에 의해 형성된 행렬방정식의 해를 계산하기 위하여 반복법의 연산량을 상당히 개선할 수 있다. 또한 전기적으로 커다란 구조물로부터 형성된 행렬방정식에 BMP가 적용된 반복법을 적용하면 반복 횟수를 크게 줄여 행렬방정식의 해를 빠르게 계산할 수 있다. 수치해석 결과는 IE-FFT와 BMP를 적용하여 침투 가능한 구조물의 전자기 산란 문제를 빠르고 정확하게 계산할 수 있음을 보여준다.
The Helmholtz equation represents acoustic or electromagnetic scattering phenomena. The Method of Lines are known to have many advantages in simulation of forward and inverse scattering problems due to the usage of angle rays and Bessel functions. However, the method does not account for the jump phenomena on obstacle boundary and the approximation includes many high order Bessel functions. The high order Bessel functions have extreme blow-up or die-out features in resonance region obstacle boundary. Therefore, in particular, when we consider shape reconstruction problems, the method is suffered from severe instabilities due to the logical confliction and the severe singularities of high order Bessel functions. In this paper, two approximation formulas for the Helmholtz equation are introduced. The formulas are new and powerful. The derivation is based on Method of Lines, Huygen's principle, boundary jump relations, Addition Formula, and the orthogonality of the trigonometric functions. The formulas reduce the approximation dimension significantly so that only lower order Bessel functions are required. They overcome the severe instability near the obstacle boundary and reduce the computational time significantly. The convergence is exponential. The formulas adopt the scattering jump phenomena on the boundary, and separate the boundary information from the measured scattered fields. Thus, the sensitivities of the scattered fields caused by the boundary changes can be analyzed easily. Several numerical experiments are performed. The results show the superiority of the proposed formulas in accuracy, efficiency, and stability.
The distribution of light in a randomly scattering medium can represent problems found in many area. Particularly, in the clinical application of lasers for Photodynamic therapy(PDT) or in the fluorescence spectroscopy for biological tissue, turbidity plays a very important role. The influences of fluorophor, scatterer, and absorber in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength. The molecular properties have been studied by laser induced fluorescence spectroscopy in scattering medium as tissue. It has been found that the effects of optical properties in scattering media could be investigated by the optical $parameters({\mu}_s$, ${\mu}_a$ ,${\mu}t)$. Experimental and Monte Carlo simulation method for modelling light transport in tissue was applied. The experimental results using a randomly distributed scattering medium were discussed and compared with those obtained through Monte Carlo simulation. It'll be also important in designing the best model for oil chemistry, medicine and application of medical engineering.
The problem of elastic wave resonance scattering from elastic targets is studied in this paper. A new resonance formalism to extract the elastic resonance information of the target from scattered elastic waves is introduced. The proposed resonance formalism is an extension of the works developed for acoustic wave scattering problems by the author. The classical resonance scattering theory computes reasonable magnitude information of the resonances in each partial wave, but the phase behaves in somewhat irregular way, therefore, is not clearly explainable. The proposed method is developed to obtain physically meaningful magnitude and phase of the resonances. As an example problem, elastic wave scattering from an infinitely-long elastic cylinder was analyzed by the proposed method and compared to the results by RST. In case of no mode conversion, both methods generate identical magnitude. However, the new method computes exact $\pi$ radian phase shills through resonances and anti-resonances while RST produces physically unexplainable phases. In case of mode conversion, in addition to the phase even magnitudes are different. The phase shifts through resonances and antiresonances obtained by the proposed method are not exactly $\pi$ radians due to energy leak by mode conversion. But, the phases by the proposed method show reasonable and intuitively correct behavior compared to those by RST.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.