• Title/Summary/Keyword: Scanning speed

Search Result 673, Processing Time 0.024 seconds

Local Obstacle Avoidance Method of Mobile Robots Using LASER scanning sensor (레이저 스캐닝 센서를 이용한 이동 로봇의 지역 장애물 회피 방법)

  • Kim, Sung Cheol;Kang, Won Chan;Kim, Dong Ok;Seo, Dong Jin;Ko, Nak Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.155-160
    • /
    • 2002
  • This paper focuses on the problem of local obstacle avoidance of mobile robots. To solve this problem, the safety direction section search algorithm is suggested. This concept is mainly composed with non-collision section and collision section from the detecting area of laser scanning sensor. Then, we will search for the most suitable direction in these sections. The proposed local motion planning method is simple and requires less computation than others. An environment model is developed using the vector space concept to determine robot motion direction taking the target direction, obstacle configuration, and robot trajectory into account. Since the motion command is obtained considering motion dynamics, it results in smooth and fast as well as safe movement. Using the mobile base, the proposed obstacle avoidance method is tested, especially in the environment with pillar, wall and some doors. Also, the proposed autonomous motion planning and control algorithm are tested extensively. The experimental results show the proposed method yields safe and stable robot motion through the motion speed is not so fast.

The Application of Image Processing Technology for the Analysis of Fish School Behavior: Evaluation of Fish School Behavior Response to the Approaching Vessel Using Scanning Sonar

  • Lee Yoo-Won;Mukai Tohru;Iida Kohji;Hwang Doo-Jin;Shin Hyeong-Il
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.212-218
    • /
    • 2002
  • The response behavior of a fish school to an approaching vessel was observed using scanning sonar. The evaluation using six parameters, which signify characteristics of school shape and behavior by sonar image processing, was proposed. Ten fish schools were analyzed and among them, three fish schools were identified for their changing shape, swimming direction, and swimming speed. Moreover, by tracing fish schools on stack of sonar images, these fish schools were seen to exhibit an apparent change of school shape and behavior. Therefore, the evaluation method of fish school behavior using six characteristic parameters indicating fish school shape and behavior by sonar image processing is useful.

Sector Based Scanning and Adaptive Active Tracking of Multiple Objects

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin;Cho, We-Duke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1166-1191
    • /
    • 2011
  • This paper presents an adaptive active tracking system with sector based scanning for a single PTZ camera. Dividing sectors on an image reduces the search space to shorten selection time so that the system can cover many targets. Upon the selection of a target, the system estimates the target trajectory to predict the zooming location with a finite amount of time for camera movement. Advanced estimation techniques using probabilistic reason suffer from the unknown object dynamics and the inaccurate estimation compromises the zooming level to prevent tracking failure. The proposed system uses the simple piecewise estimation with a few frames to cope with fast moving objects and/or slow camera movements. The target is tracked in multiple steps and the zooming time for each step is determined by maximizing the zooming level within the expected variation of object velocity and detection. The number of zooming steps is adaptively determined according to target speed. In addition, the iterative estimation of a zooming location with camera movement time compensates for the target prediction error due to the difference between speeds of a target and a camera. The effectiveness of the proposed method is validated by simulations and real time experiments.

Multiplier Using CRT and Overlapped Multiple-bit Scanning Method (CRT와 중첩다중비트 주사기법을 접목한 승산기)

  • 김우완;장상동
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.12
    • /
    • pp.749-755
    • /
    • 2003
  • Digital signal processing hardware based in RNS is currently considered as an important method for high speed and low cost hardware realization. This research designs and implements the method for conversion from a specific residue number system with moduli of the from $(2^k-1, 2^k, 2^k+1)$ to a weighted number system. Then, it simulates the implementation using a overlapped multiple-bit scanning method in the process of CRT conversion. In conclusion, the simulation shows that the CRT method which is adopted in this research, performs arithmetic operations faster than the traditional approaches, due to advantages of parallel processing and carry-free arithmetic operation.

Scanning Stereoscopic PIV for 3D Vorticity Measurement

  • SAKAKIBARA Jun;HORI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.1-13
    • /
    • 2004
  • A scanning stereo-PIV system was developed to measure the three-dimensional distribution of three-component velocity in a turbulent round jet. A laser light beam produced by a high repetition rate YLF pulse laser was expanded vertically by a cylindrical lens to form a laser light sheet. The light sheet is scanned in a direction normal to the sheet by a flat mirror mounted on an optical scanner, which is controlled by a programmable scanner controller. Two high-speed mega-pixel resolution C-MOS cameras captured the particle images illuminated by the light sheet, and stereoscopic PIV method was adopted to acquire the 3D-3C-velocity distribution of turbulent round jet in an octagonal tank filled with water. The jet Reynolds number was set at Re=1000 and the streamwise location of the measurement was fixed at approximately x = 40D. Time evolution of three-dimensional vortical structure, which is identified by vorticity, is visualized. It revealed that the existence of a group of hairpin-like vortex structures was quite evident around the rim of the shear layer of the jet. Turbulence statistics shows good agreement with the previous data, and divergence of a filtered (unfiltered) velocity vector field was $7\%\;(22\%)$ of root-me an-squared vorticity value.

  • PDF

Beam-scanning Imaging Needle for Endoscopic Optical Coherence Tomography

  • Yang, Woohyeok;Hwang, Junyoung;Moon, Sucbei
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.532-537
    • /
    • 2021
  • We present a compact endoscopic probe in a needle form which has a fast beam-scanning capability for optical coherence tomography (OCT). In our study, a beam-scanning OCT imaging needle was fabricated with a 26G syringe needle (0.46 mm in outer diameter) and a thin OCT imaging probe based on the stepwise transitional core (STC) fiber. The imaging probe could freely rotate inside the needle for beam scans. Hence, OCT imaging could be performed without rotation or translation of the needle body. In our design, the structural integrity of the needle's steel tubing was preserved for mechanical robustness. Probing the optical signal was performed through the needle's own window formed at the end. For hand-held operation of our imaging needle, a light and compact scanner module (130 g and 45 × 53 × 60 mm3) was devised. Connected to the imaging needle, it could provide rotational actuation driven by a galvanometer. Because of its finite actuation range, our scanner module did not need a fiber rotary joint which might add undesirable complexity. The beam scan speed was 20 Hz and supported 20 frames per second at the maximum for endoscopic OCT imaging.

A micromachined cantilever for chemically sensitive scanning force microscope applications (화학적 성분 분석능력을 가진 원자 현미경의 제작)

  • Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This paper describes a novel concept of a chemically sensitive scanning force microscope (CS-SFM). It consists of the conventional SFM and the time-of-flight mass spectrometer (TOF-MS). A switchable cantilever (SC) fabricated by the micromachining technology combines each advantage of two completely different systems, SFM and TOF-MS. The CS-SFM offers to produce both images of topography and chemical information simultaneously. First we employed a rotatable tip holder based on 4 piezotube actuators for demonstration of the possibility of the CS-SFM concept. Second the CS-SFM concept is optimized with the micromachining technology. The micromachined SC with an integrated bimorph actuator and a piezoresistive strain sensor provides a reasonable switching speed of ${\sim}10$ ms which is very attractive for the CS-SFM application. The SC is currently being integrated in an ultra-high-vacuum system to perform various experiments.

Development of High Speed Synchronous Control System for Real Time 3D Eye Imaging Equipment (망막의 3차원 실시간 영상화를 위한 고속 동기제어 시스템 개발)

  • 고종선;김영일;이용재;이태훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • To show a retina shape and thickness on the computer monitor, a laser has been used in Scanning Laser Ophthalmoscope(SLO) equipment using the travelling difference. This method requires exact synchronous control of laser travelling in optic system to show a clear 3-dimensional image of retina. To obtain this image, this exact synchronism is very important for making the perfect plane scanning. In this study, a synchronous control of the galvanometer to make 3-dimensional retina image is presented. For the more, a very simple mathematical model of the galvanometer is approved by experimental result.

Advanced Mobile Display System Architecture

  • Kim, Chang-Sun;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.850-853
    • /
    • 2005
  • This paper presents issues of display hardware architecture, relating to memory, display driver IC architecture, and chip-to-chip interface. To achieve a low power and low cost mobile phone, not only the display architecture must be carefully selected, but also the driver-ICs optimized to accommodate the different modes of operation found in typical handheld devices. The technique of forming a photo sensor in each pixel using TFT and display module architecture are developed to add multi functions in display such as fingerprint recognition, image scanning, and integrated touch screen. Detailed architectures of IC partitioning, high-speed serial interface, D/A converter, and multi functions such as fingerprint recognition and image scanning using photo sensors are important to a power optimized system.

  • PDF

자율주행 로봇을 위한 Laser Range Finder

  • 차영엽;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.266-270
    • /
    • 1992
  • In this study an active vision system using a laser range finder is proposed for the navigation of a mobile robot in unknown environment. The laser range finder consists of a slitted laser beam generator, a scanning mechanism, CCD camera, and a signal processing unit. A laser beam from laser source is slitted by a set of cylindrical lenses and the slitted laser beam is emitted up and down and rotates around the robot by the scanning mechanism. The image of laser beam reflected on the surface of an object is engraved on the CCD array. A high speed image processing algorithm is proposed for the real-time navigation of the mobile robot. Through experiments it is proved that the accurate and real-time recognition of environment is able to be realized using the proposed laser range finder.