• Title/Summary/Keyword: Scanning model

Search Result 940, Processing Time 0.031 seconds

Direct Finite Element Model Generation using 3 Dimensional Scan Data (3D SCAN DATA 를 이용한 직접유한요소모델 생성)

  • Lee Su-Young;Kim Sung-Jin;Jeong Jae-Young;Park Jong-Sik;Lee Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.143-148
    • /
    • 2006
  • It is still very difficult to generate a geometry model and finite element model, which has complex and many free surface, even though 3D CAD solutions are applied. Furthermore, in the medical field, which is a big growth area of recent years, there is no drawing. For these reasons, making a geometry model, which is used in finite element analysis, is very difficult. To resolve these problems and satisfy the requests of the need to create a 3D digital file for an object where none had existed before, new technologies are appeared recently. Among the recent technologies, there is a growing interest in the availability of fast, affordable optical range laser scanning. The development of 3D laser scan technology to obtain 3D point cloud data, made it possible to generate 3D model of complex object. To generate CAD and finite element model using point cloud data from 3D scanning, surface reconstruction applications have widely used. In the early stage, these applications have many difficulties, such as data handling, model creation time and so on. Recently developed point-based surface generation applications partly resolve these difficulties. However there are still many problems. In case of large and complex object scanning, generation of CAD and finite element model has a significant amount of working time and effort. Hence, we concerned developing a good direct finite element model generation method using point cloud's location coordinate value to save working time and obtain accurate finite element model.

The Study on Reduction of Scanning Path Build Time According to Control of STL file Slicing Height - Application of Small Jewellery (STL File 슬라이싱 높이 조정에 따른 주사경로 생성시간 저감에 관한 연구 - 소형 보석류에 적용)

  • Kim Tae Ho;Kim Min Ju;Lee Seung Soo;Jeon Eon Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.205-210
    • /
    • 2005
  • This paper addresses the correlation between the change of file size and the scanning path build time by the slicing height of STL file. Though the study about STL file has been achieved quite actively scanning path build time using STL file is not investigated so much to be satisfied. The file size depends on the number of polygon created by the slicing height specified. And this number of polygons increases in a regular rate. The correlation between the number of polygons and the scanning path build time is examined and verified.

The study on the reducing of scanning path creation time using SLC file. (SLC파일을 이용한 주사경로 생성 시간 단축에 관한 연구)

  • 김태호;장성규;박정보;이준희;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.114-118
    • /
    • 2004
  • This paper is compared the build time of scanning path as to laminate height of the SLC and STL file. The STL file improve the surface roughness according to slicing height. But it have the fault spending long time to the creation of scanning path by being lower slicing height. So we proposed the SLC file to improve this fault. Therefore this paper showed to the build time of scanning path by the increase of peace using the jewellery model.

  • PDF

A Path Generation Algorithm of an Automatic Guided Vehicle Using Sensor Scanning Method

  • Park, Tong-Jin;Ahn, Jung-Woo;Han, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • In this paper, a path generation algorithm that uses sensor scannings is described. A scanning algorithm for recognizing the ambient environment of the Automatic Guided Vehicle (AGV) that uses the information from the sensor platform is proposed. An algorithm for computing the real path and obstacle length is developed by using a scanning method that controls rotating of the sensors on the platform. The AGV can recognize the given path by adopting this algorithm. As the AGV with two-wheel drive constitute a nonholonomic system, a linearized kinematic model is applied to the AGV motor control. An optimal controller is designed for tracking the reference path which is generated by recognizing the path pattern. Based on experimental results, the proposed algorithm that uses scanning with a sensor platform employing only a small number of sensors and a low cost controller for the AGV is shown to be adequate for path generation.

A Study on the Strain Analysis by Image Processing Technique (화상처리기법을 이용한 변형율해석에 관한 연구)

  • 백인환;신문교
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.32-45
    • /
    • 1988
  • The scanning moire method, in which the master grating is replaced by the scanning line of television camera and in which the moire pattern is obtained by thining out some scanning line, is discussed by the sampling theory. It is determined also by the sampling theory that relationship between the fringe pattern. The programs that analyze the strain by the scanning moire method have been developed. For the simulation model in which we are able to calculate analytically the distribution of strains, the scanning moire method is discussed. It is shown that the small strains and the large strains are analyzed from the same picture by the thinning out technique and that the accuracy of analysis is improved by change of the phase in the thinning out technique.

  • PDF

Recent Advances in Scanning Acoustic Microscopy for Adhesion Evaluation of Thin Films

  • Ju, Hyeong-Sick;Tittmann, Bernhard R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.534-549
    • /
    • 2009
  • As the thin film technology has emerged in various fields, adhesion of the film interface becomes an important issue in terms of the longevity and durability of thin film devices. Diverse nondestructive methods utilizing acoustic techniques have been developed to assess the interfacial integrity. As an effective technique based on the ultrasonic wave focusing and the surface acoustic wave(SAW) generation, scanning acoustic microscopy(SAM) has been investigated for adhesion evaluation. Visualization of film microstructures and quantification of adhesion weakness levels by SAW dispersion are the recent achievements of SAM. To overcome the limitations in the theoretical dispersion model only suitable for perfectly elastic and isotropic materials, a new model has been more recently developed in consideration of film anisotropy and viscoelasticity and applied to the adhesion evaluation of polymeric films fabricated on semiconductive wafers.

Modeling and Calibration of a 3D Robot Laser Scanning System (3차원 로봇 레이저 스캐닝 시스템의 모델링과 캘리브레이션)

  • Lee Jong-Kwang;Yoon Ji Sup;Kang E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • In this paper, we describe the modeling for the 3D robot laser scanning system consisting of a laser stripe projector, camera, and 5-DOF robot and propose its calibration method. Nonlinear radial distortion in the camera model is considered for improving the calibration accuracy. The 3D range data is calculated using the optical triangulation principle which uses the geometrical relationship between the camera and the laser stripe plane. For optimal estimation of the system model parameters, real-coded genetic algorithm is applied in the calibration process. Experimental results show that the constructed system is able to measure the 3D position within about 1mm error. The proposed scheme could be applied to the kinematically dissimilar robot system without losing the generality and has a potential for recognition for the unknown environment.

Comparison of the accuracy of digital models made from white light scanner by scanning method (스캐닝 방법에 따른 백색광 스캐너 기반으로 채득된 디지털 모형의 정확성 비교)

  • Kim, Ki-Baek;Lee, Gyeong-Tak;Kim, Jae-Hong
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.6
    • /
    • pp.1082-1089
    • /
    • 2012
  • Objectives : The aim of this study was to determine the accuracy of digitized stone models, impression materials compared to the master model and the reliability of the computer aided analysis. Methods : A master model(500B-1, Nissin dental product, Japan) with the prepared lower full arch tooth was used. Ten vinyl polysiloxane impressions(Examix$^{(R)}$, GC Industrial Corp, Japan) of master model were taken and type IV stone(aesthetic-base gold$^{(R)}$, Dentona, Germany) were poured in stone models. The linear distance between the reference points were measured and analyzed on the Delcam Copycad$^{(R)}$(Delcam plc, UK). The t-student test for paired samples was used for statistical analysis. Results : The mean differences to master model for stone model and impression material were 0.11~0.19mm, and 0.19~0.29mm, respectively. There were statistical differences in dimensional accuracy for full arch impression between master model and stone model/impressions(p<.05). Conclusions : Two different scanning methods showed clinically acceptable accuracy of full arch digital impression produced by them. These results will have to be confirmed in further clinical studies.

Development of Multi-Laser Vision System For 3D Surface Scanning (3 차원 곡면 데이터 획득을 위한 멀티 레이져 비젼 시스템 개발)

  • Lee, J.H.;Kwon, K.Y.;Lee, H.C.;Doe, Y.C.;Choi, D.J.;Park, J.H.;Kim, D.K.;Park, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.768-772
    • /
    • 2008
  • Various scanning systems have been studied in many industrial areas to acquire a range data or to reconstruct an explicit 3D model. Currently optical technology has been used widely by virtue of noncontactness and high-accuracy. In this paper, we describe a 3D laser scanning system developped to reconstruct the 3D surface of a large-scale object such as a curved-plate of ship-hull. Our scanning system comprises of 4ch-parallel laser vision modules using a triangulation technique. For multi laser vision, calibration method based on least square technique is applied. In global scanning, an effective method without solving difficulty of matching problem among the scanning results of each camera is presented. Also minimal image processing algorithm and robot-based calibration technique are applied. A prototype had been implemented for testing.

  • PDF

Digitization of Unknown Sculptured Surface Using a Scanning Probe (스캐닝 프로브를 이용한 미지의 자유곡면 점군 획득에 관한 연구)

  • 권기복;김재현;이정근;박정환;고태조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • This paper describes a method for digitizing the compound surfaces which are comprised of several unknown feature shapes such as base surface, and draft wall. From the reverse engineering's point of view, the main step is to digitize or gather three-dimensional points on an object rapidly and precisely. As well known, the non-contact digitizing apparatus using a laser or structured light can rapidly obtain a great bulk of digitized points, while the touch or scanning probe gives higher accuracy by directly contacting its stylus onto the part surface. By combining those two methods, unknown features can be digitized efficiently. The paper proposes a digitizing methodology using the approximated surface model obtained from laser-scanned data, followed by the use of a scanning probe. Each surface boundary curve and the confining area is investigated to select the most suitable digitizing path topology, which is similar to generating NC tool-paths. The methodology was tested with a simple physical model whose shape is comprised of a base surface, draft walls and cavity volumes.