Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.
As the thin film technology has emerged in various fields, adhesion of the film interface becomes an important issue in terms of the longevity and durability of thin film devices. Diverse nondestructive methods utilizing acoustic techniques have been developed to assess the interfacial integrity. As an effective technique based on the ultrasonic wave focusing and the surface acoustic wave(SAW) generation, scanning acoustic microscopy(SAM) has been investigated for adhesion evaluation. Visualization of film microstructures and quantification of adhesion weakness levels by SAW dispersion are the recent achievements of SAM. To overcome the limitations in the theoretical dispersion model only suitable for perfectly elastic and isotropic materials, a new model has been more recently developed in consideration of film anisotropy and viscoelasticity and applied to the adhesion evaluation of polymeric films fabricated on semiconductive wafers.
최근 재료, 생물의학(biomedicine), 음향, 전자 등 다양한 분야에서 나노 구조를 갖는 박막 기술이 도입되면서 박막 계면의 수명과 내구성 확보를 위한 초고주파수의 초음파현미경을 이용한 정량적인 비파괴적 접합평가에 관한 연구가 큰 이슈가 되고 있다. 본 연구에서는 초음파의 집속, 누설탄성표면파의 발생과 V(z) 곡선의 시뮬레이션 그리고 초고주파수 음향 이미징 기법을 이용하여 나노 스케일 구조를 갖는 박막 시험편의 접합계면을 평가하였다. V(z) 곡선의 컴퓨터 시뮬레이션을 통하여 접합계면에 존재하는 미세 결함(디라미네이션 등)의 검출 감도를 추정할 수 있었으며, 1 GHz의 초고주파수 디포커싱 모드로 박막 시험편의 접합계면에 존재하는 나노 스케일의 미세 결함을 음향 이미지로 가시화 할 수 있어 나노 구조를 갖는 박막의 접합계면의 비파괴평가에 초음파현미경이 매우 유용함을 알 수 있었다.
Acoustic microscopy has attracted much interest recently as potential nondestructive evaluation technique for detecting and sizing defects of surface and sub-surface. Also acoustic emission testing method has been developed for detecting microcracks which is more than 30${\mu}m$ in length quantitatively on ceramics. In the present paper, acoustic emission during the four point bending test in hot-pressed sintered $Si_3N_4$ specimen which was stressed by thermal shock, has been measured by high sensitive sensing system. The surface and sub-surface cracks were detected by scanning acoustic micrscope of 800 MHz and conventional ultrasonic testing in C-scope image. The purpose was to investigate the location and size of cracks by SAM and AE technique, whose experimental data demonstrate good for detecting microcracks.
표면파를 이용하여 쇼트피닝된 Al 7075 합금의 잔류응력 분포를 평가하고자 하였다. 재료 내 표면층에 대한 잔류응력분포를 달리하기 위해서 피닝볼의 속도를 30m/s로 하여 쇼트피닝을 수행하였다. 표면파의 속도는 초음파현미경을 이용하여 V(z)곡선법으로 측정하였다. 쇼트피닝 후 비커스경도를 측정한 결과 쇼트피닝에 의한 소성변형으로 0.25mm 깊이까지 가공경화가 나타났다. 압축잔류응력이 증가하면서 표면파의 속도는 증가를 하였고 인장잔류응력이 작용할수록 표면파의 속도가 감소하였다. 표면파의 속도 변화는 X선 회절에 의해 측정한 잔류응력 변화와 밀접한 연관성을 나타내었다.
본 논문은 재료의 표면검사와 음향특성 측정이 가능한 마이크로/나노 비파괴평가 기술을 소개한다. 이들 기술로 초음파원자현미경과 초음파현미경의 원리와 특징 그리고 응용분야에 대해서 기술하였다. 특히, 이들 기술은 표면과 표면직하의 이미지 관찰 외에도 음향특성을 측정하여 마이크로/나노 구조물 혹은 표면에서의 기계적인 물성평가가 가능한 기술이다. 따라서 기존 비파괴분야와 함께 첨단 산업분야에 있어 마이크로/나노 비파괴평가의 적용과 기술 개발이 향후 폭넓게 가능할 것으로 판단된다.
Acoustic microscopy has attracted much intrest recently as potential mondestructive evalution technique for detecting and sizing defects of surface and sub-surface. Also acoustic emission testing method has been developed for detecting microcracks which is more than 30 umm in length quintitatively on ceramics material. In the present paper, acoustic emission during the four point bending test in hot-pressed sintered Si$\_$3/N$\_$4/ specimen which was stressed bythermal shock has been measured by high sensitive sensing system. The surface and sub-surface cracks were detected by scanning acoustic microscope of 800 MHz and conventional ultrasonic testing in C-scope image. The purpose was to investigate the location and size of cracks by SAM and AE technique, whose experimental datas demontrates good agreement for detecting microcracks.
전자 제품에 사용되는 부품 ㆍ소재의 신뢰성 품질 평가를 위해 정밀한 모터의 제어기술, 첨단신호처리 기술, 압전소자 기술의 발달로 미세변화 계측의 재현성, 고분해능, 표면과 내부의 이미지관찰, 또한 미소부위에서 재료의 누설탄성표면파의 음속측정이 가능한 초음파현미경에 대한 연구가 최근 들어 활발히 진행되고 있다. (중략)
본 연구에서는 초음파현미경의 기하학적 원리와 초음파현미경의 특징중 하나인 V(z)곡선의 간섭파형을 시뮬레이션 하였고, 실제 초음파현미경의 V(z)곡선법을 이용하여 미소영역에서의 누설탄성표면파 음속을 측정하였다. 초음파현미경을 이용한 V(z)곡선법의 음속측정결과가 시뮬레이션 음속값과 큰차이를 보이지 않으므로 미소영역에 초음파현미경의 V(z)곡선법을 적용하여 초음파의 음속측정이 가능함을 확인하였다. 이는 향후 초음파현미경을 이용하여 미세한 재료의 물성평가에 적용할 수 있을 것으로 기대된다.
열-음향방출(thermo-AE) 기법을 이용하여 두께 3mm, $[+45_6/-45_6]_s$ 복합재료 적층판의 열응력 유기 손상에 대한 비파괴평가의 유효성을 연구하였다. 반복적인 열부하 사이클에 의해서 thermo-AE 사상수가 감소하는 경향이 뚜렷하게 나타나서 열부하에 따른 카이저효과가 관찰되었다. 열부하사이클중의 thermo-AE거동을 분석하여 복합재료의 응력자유온도를 결정할 수 있었다. 초음파 C스캔, 광학현미경, 주사형 전자현미경을 통해 섬유파단과 모재파손이 관찰되었으며, 이들 파손 인자는 thermo-AE 신호의 단시간 퓨리에 변환처리에 의해 생성된 3종류의 서로 다른 시간-주파수 특성과 대응하였나 이 특성을 이용하여 복합재료의 냉각열처리 및 반복 열부하사이클시의 손상발생과정 및 내부 마찰거동 내역을 추적할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.