• Title/Summary/Keyword: Scan technique

Search Result 595, Processing Time 0.027 seconds

Implementation of Ultrasonic Immersion Technique for Babbitt Metal Debonding in Turbine Bearing (초음파 수침법을 이용한 터빈베어링 Babbitt금속 박리 검사 기술)

  • Jung, Gye-Jo;Park, Sang-Ki;Cho, Yong-Sang;Park, Byung-Cheol;Kil, Doo-Song
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.348-353
    • /
    • 2004
  • This study is aimed for the implementation of ultrasonic method to assess the reliability of turbine bearings. A modified ultrasonic immersion technique was carried out in both laboratory experiment and field application. From the laboratory results, we confirmed that the condition of interface layer between the babbitt and base metal be monitored by the C-Scan. The C-scan image by the ultrasonic immersion test can be used successfully to observe the condition of interface layer. The testing with a focused transducer provides a promising approach for estimating the extent of the damaged region and observing the interface layer effectively. The difference of the ultrasonic reflection ratio between the bonding and debonding area at the interface layer is one of the key parameters for assessing the extent of the damaged area; additionally, the reflection amplitude exhibits a favorable correlation with the overall damage level. The technique developed in this study was applied to the inspection of the turbine bearings at several power plants in Korea whereby the applicability in the field can be ascertained.

A Study on the Mitigation of the Exposure Dose Applying Bolus Tracking in Brain Perfusion CT Scan (뇌 관류 CT검사에서 BolusTracking기법을 적용한 피폭선량 저감화에 관한 연구)

  • Kim, Ki-Jeong;Jung, Hong-Ryang;Lim, Cheong-Hwan;Hong, Dong-Hee;Shim, Jae-Goo;You, In-Gyu
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.353-358
    • /
    • 2014
  • This study was conducted to analyze the patient's exposed dose targeting the patients who had acute ischemic stroke symptoms and CT brain perfusion scan, by comparing fixed time technique and bolus tracking technique which was provided by the manufacturer and to identify the Time graph to implement the usability of contrast medium's tracking technique the best contrast enhancement intervals. $CTDI_{VOL}$ of PCT in patient appeared to be 431.72mGy in fixed scan delay protocol, whereas 323.61mGy in Bolus tracking technique. The value of DLP appeared to be $1243.47mGy{\cdot}cm$ in fixed scan delay protocol, whereas $932mGy{\cdot}cm$ in Bolus tracking technique. Time graph appeared to be various in fixed scan delay protocol, whereas the optimal time graph could be obtained in Bolus tracking. The exposure dose could be reduced by 25% applying Bolus tracking technique when taking brain perfusion CT scan.

Efficient Test Data Compression and Low Power Scan Testing in SoCs

  • Jung, Jun-Mo;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.321-327
    • /
    • 2003
  • Testing time and power consumption during the testing of SoCs are becoming increasingly important with an increasing volume of test data in intellectual property cores in SoCs. This paper presents a new algorithm to reduce the scan-in power and test data volume using a modified scan latch reordering algorithm. We apply a scan latch reordering technique to minimize the column hamming distance in scan vectors. During scan latch reordering, the don't-care inputs in the scan vectors are assigned for low power and high compression. Experimental results for ISCAS 89 benchmark circuits show that reduced test data and low power scan testing can be achieved in all cases.

  • PDF

Low Power Test for SoC(System-On-Chip)

  • Jung, Jun-Mo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.729-732
    • /
    • 2011
  • Power consumption during testing System-On-Chip (SOC) is becoming increasingly important as the IP core increases in SOC. We present a new algorithm to reduce the scan-in power using the modified scan latch reordering and clock gating. We apply scan latch reordering technique for minimizing the hamming distance in scan vectors. Also, during scan latch reordering, the don't care inputs in scan vectors are assigned for low power. Also, we apply the clock gated scan cells. Experimental results for ISCAS 89 benchmark circuits show that reduced low power scan testing can be achieved in all cases.

Radar identification by scan period validation (스캔주기 유효성 판별에 의한 레이더 식별)

  • Kim, Gwan-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Radar signal analysis of electronic warfare is a technique for identifying a radar type by signal parameters(direction, radion frequency, pulse repetition interval, pulse width, scan period..) extracted from a received radar pulse. However as the modern radar and new threat environments is advanced, radar identification ambiguity arises in the process of identifying the types of radars. In this paper, we analyze the problems of the existing method and propose a new method. This technique determines the validity of the scan period by the difference in the arrival time of the radar pulse and the minimum number of scan period discrimination. Experiments proved that the scan cycle results are derived regardless of the RMS((Root Mean Square) of the input amplitude.

Landmark Extraction for 3D Human Body Scan Data Using Markerless Matching (마커 없는 매칭을 활용한 3 차원 인체 스캔 데이터의 기준점 추출)

  • Yoon, Dong-Wook;Heo, Nam-Bin;Ko, Hyeong-Seok
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.163-167
    • /
    • 2009
  • 3D human body scan technique is known to be practically useful in industrial field as the technique becomes more precise and cheaper. Landmark extraction is essential for full utilization of the scan data. In this paper, we suggest an algorithm for automatic landmark extraction. For this purpose, we perform markerless matching to the target data using PCA analysis and quasi-Newton optimization. Landmarks are extracted from the topology of resulting body.

  • PDF

Image Enhancement Techniques for UT - NDE for Sizing and Detection of Cracks in Narrow Target (초음파 비파괴 평가를 위한 협소 타깃의 크랙 사이징 및 검출을 위한 영상 증진기술)

  • Lee, Young-Seock
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.209-213
    • /
    • 2006
  • In this paper describes image enhancement technique using deconvolution processing for ultrasonic nondestructive testing. . When flaws are detected for B-scan or C-scan, blurring effect which is caused by the moving intervals of transducer degrades the quality of images. In addition, acquisited images suffer form speckle noise which is caused by the ultrasonic components reflected from the grain boundary of material [1,2]. The deconvolution technique can restore sharp peak value or clean image from blurring signal or image. This processing is applied to C-scan image obtained from known specimen. Experimental results show that the deconvolution processing contributes to get improved the quality of C-scan images.

  • PDF

A High Speed Address Recovery Technique for Single-Scan Plasma Display Panel(PDP) (Single-Scan Plasma Display Panel(PDP)를 위한 고속 어드레스 에너지 회수 기법)

  • Lee, Jun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.239-242
    • /
    • 2005
  • A high speed address recovery technique for AC plasma display Panel(PDP) is proposed. By removing the GND switching operation, the recovery speed can be increased and switching loss due to GND switch also becomes to be reduced. The proposed method is able to perform load-adaptive operation by controlling the voltage level of energy recovery capacitor, which prevents increasing inefficient power consumption caused by circuit loss during recovery operation. Thus, the technique shows the minimum address power consumption according to various displayed images, different from Prior methods operating in fixed mode regardless of images. Test results with 50" HD single-scan PDP(resolution = 1366$\times$768) show that less than 350ns of recovery time is successfully accomplished and about 54% of the maximum power consumption can be reduced, tracing minimum power consumption curves.

  • PDF

Region based Scan Rate Up-Conversion Technique (영역 기반 Scan Rate Up-Conversion 기법)

  • Kim, Young-Ro;Hong, Byoung-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.173-176
    • /
    • 2005
  • 본 논문에서 영역 분할을 기반으로 하는 새로운 scan rate of-conversion 기법을 제안한다. 제안하는 공간적 보간 방법과 기존의 시간적 보간 방법을 이용하여 시공간 보간을 한다. 제안된 방법에서는 먼저 분수령 알고리즘을 이용한 영역 분할하고, 분할된 영역을 기반으로 하여 영역간의 에지 방향성을 결정한다. 기존 알고리즘과 같이 화소간 값 차이를 이용하여 에지의 방향을 구하지 않고 분할된 영역에서 영역구분에 따른 방향에 따라 보간을 함으로써 에지를 유지하면서 scan rate up-conversion을 할 수 있다.

  • PDF

Does the palatal vault form have an influence on the scan time and accuracy of intraoral scans of completely edentulous arches? An in-vitro study

  • Osman, Reham;Alharbi, Nawal
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.294-304
    • /
    • 2022
  • PURPOSE. The purpose of this study was to evaluate the influence of different palatal vault configurations on the accuracy and scan speed of intraoral scans (IO) of completely edentulous arches. MATERIALS AND METHODS. Three different virtual models of a completely edentulous maxillary arch with different palatal vault heights- Cl I moderate (U-shaped), Cl II deep (steep) and Cl III shallow (flat)-were digitally designed using CAD software (Meshmixer; Autodesk, USA) and 3D-printed using SLA-based 3D-printer (XFAB; DWS, Italy) (n = 30; 10 specimens per group). Each model was scanned using intraoral scanner (Trios 3; 3ShapeTM, Denmark). Scanning time was recorded for all samples. Scanning accuracy (trueness and precision) were evaluated using digital subtraction technique using Geomagic Control X v2020 (Geomagic; 3DSystems, USA). One-way analysis of variance (ANOVA) test was used to detect differences in scanning time, trueness and precision among the test groups. Statistical significance was set at α = .05. RESULTS. The scan process could not be completed for Class II group and manufacturer's recommended technique had to be modified. ANOVA revealed no statistically significant difference in trueness and precision values among the test groups (P=.959 and P=.658, respectively). Deep palatal vault (Cl II) showed significantly longer scan time compared to Cl I and III. CONCLUSION. The selection of scan protocol in complex cases such as deep palatal vault is of utmost importance. The modified, adopted longer path scan protocol of deep vault cases resulted in increased scan time when compared to the other two groups.