• Title/Summary/Keyword: Scale-down model

Search Result 221, Processing Time 0.027 seconds

ULTRA HIGH ENERGY COSMIC RAYS AND CLUSTERS

  • JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.421-426
    • /
    • 2004
  • I briefly review the current theoretical status of the origins of ultrahigh energy cosmic rays with special emphasis on models associated with galaxy clusters. Some basic constraints on models are laid out, including those that apply both to so-called 'top-down' and 'bottom-up' models. The origins of these UHECRs remain an enigma; no model stands out as a clear favorite. Large scale structure formation shocks, while very attractive conceptually in this context, are unlikely to be able to accelerate particles to energies much above $10^{18}eV$. Terminal shocks in relativistic AGN jets seem to be more viable candidates physically, but suffer from their rarity in the local universe. Several other, representative, models are outlined for comparison.

Quantitative Visualization of Ventilation Flow for Defrost Mode in a Real Passenger Car (제상모드에 대한 실차 내부 환기유동의 정량적 가시화 연구)

  • Lee, Jin-Pyung;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.40-44
    • /
    • 2010
  • Thermal comfort inside a passenger car has been receiving large attention in automobile industries. Especially, the performance of windshield defroster is important in the design of a car to ensure passenger comport and safety. Thereby, better understanding on the ventilation flow along the vehicle windshield is essential to evaluate the performance of windshield defroster. However, most previous studies dealt with the defrost flow using CFD (computational fluid dynamics) calculations or scale-down model experiments. In this study, a real commercial automobile was used to investigate the flow discharged from the vehicle defroster and the ventilation flow along the windshield using a PIV velocity field measurement technique. The experimental data would be useful to understand the flow characteristics in detail and also can be used to validate numerical predictions.

THE DYNAMICAL EVOLUTION OF GLOBULAR CLUSTERS WITH STELLAR MASS LOSS

  • Kim, Chang-Hwan;Chun, Mun-Suk;Min, Kyung-W.
    • Journal of Astronomy and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.11-23
    • /
    • 1991
  • The dynamical evolution of globular clusters is studied using the orbit-averaged multicomponent Fokker-Planck equation. The original code developed by Cohn(1980) is modi-fied to include the effect of stellar evolutions. Plommer's model is chosen as the initial density distribution with the initial mass function index $\alpha$=0.25, 0.65, 1.35, 2.35, and 3.35. The mass loss rate adopted in this work follows that of Fusi-Pecci and Renzini(1976). The stellar mass loss acts as the energy source, and thus affects the dynamical evolution of globular clusters by slowing down the evolution rate and extending the core collapse time Tcc. And the dynamical length scale $$R_c, $$R_h is also extended. This represents the expansion of cluster due to the stellar mass loss.

  • PDF

Modal Identification of a Slender Structure using the Proper Orthogonal Decomposition Method (Proper Orthogonal Decomposition 기법을 이용한 세장한 구조물의 모드인자 파악)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper, the Proper Orthogonal Decomposition (POD) method, which is a statistical analysis technique to find the modal characteristics of a structure, is adapted to identify the modal parameters of a tall chimney structure. A wind force time history, which is applied to the structure, is obtained by a wind tunnel test of a scale down model. The POD method is applied on the wind force induced responses of the structure, and the true normal modes of the structure can be obtained. The modal parameters including, natural frequency, mode shape, damping ratio and kinetic energy of the structure can be estimated accurately. With these results, it may be concluded that the POD method can be applied to obtain accurate modal parameters from the wind-induced building responses.

  • PDF

A Study on the Relief of Shell Wall Thinning of Low Pressure Type Feedwater Heater Around the Extraction Nozzle Identified (저압형 급수가열기 추기노즐에서 동체 감육 완화에 관한 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Seo, Hyuk-Ki
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.173-179
    • /
    • 2008
  • The current machinery and tools of secondary channel of the nuclear power plants were produced in the carbon-steel and low-alloy steel. What produced with the carbon-steel occurs wall thinning effect from flow accelerated corrosion by the fluid flow at high temperature, high pressure. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed. Wall thinning by flow accelerated corrosion occurs piping system, the heat exchanger, steam condenser and feedwater heaters etc,. Feedwater heaters of many nuclear power plants have recently experienced sever wall thinning damage, which will increase as operating time progress. This study describes the comparisons between the numerical results using the FLUENT code and experimental data of down scale model.

  • PDF

Study on the Curve Squeal Noise of Train Wheels (철도차량 곡선부 소음에 대한 발생 메카니즘 규명 관련 연구)

  • Kim, Kwan-Ju;Kim, Beom-Soo;Park, Jin-Kyu;Kim, Jae-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.29-32
    • /
    • 2005
  • This paper presents experimental analysis of a friction-driven wheel that is responsible for wheel squeal. Squeal noise generating mechanism and environment of train u heels has been tried to reproduce under laboratory condition. Scale down size rail and wheel are made and influential parameters to squeal noise are measured, e. g. frictional force, pressure between rail and wheel, creep speed of rail. Negative damping characteristic curve are calculated currently. Necessary relating computational analysis is also carried on.

  • PDF

Aerodynamic Characteristics on Railway Acoustic Screen Using 1/61-scaled Mock-Up (모형시험장치를 이용한 철도 선로변 방음벽에 미치는 공력 특성시험)

  • Jang, Yong-Jun;Kim, Dong-Hyeon;Park, Won-Hee;Park, Seung-Yil
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.430-437
    • /
    • 2007
  • The experiments for aerodynamic characteristics on railway acoustic screen are performed using 1/61 scale-down mock-up facility. The train model for the experiment is high speed train (KTX) and the tested speed is about 300km/h. The tested train length is about 61cm which is corresponding to two units of train. The strength of pressure wave is measured using piezo typed pressure sensor. The measured pressure is compared with field test data and UIC 779-1 values.

  • PDF

PIV Measurements of Ventilation Flow inside a Passenger Compartment (PIV를 이용한 실차 내부 환기유동의 정량적 속도장 측정)

  • Lee, Jin-Pyung;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.24-29
    • /
    • 2011
  • The improvement of climatic comfort is crucial not only for passenger comfort but also for driving safety. Therefore, a better understanding on the flow characteristics of ventilation flow inside the passenger compartment is essential. Most of the previous studies investigated the ventilation flow using Computational Fluid Dynamics (CFD) calculations or scale-down water-model experiments. In this study, the ventilation flow inside the passenger compartment of a real commercial automobile was investigated using a Particle Image Velocimetry (PIV) velocity field measurement technique. Under real operating conditions, the velocity fields were measured at several vertical planes for several ventilation modes. The experimental data obtained from this study can be used to understand the detailed flow characteristics in the passenger compartment of a real car and to validate numerical predictions.

A study on Requirements of the Test Flight Safety for a 350m Unmanned Airship (50m급 무인비행선 시험비행 안전성 요구사항에 관한 연구)

  • Jeong, B.G.;Shin, D.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.12 no.2
    • /
    • pp.1-15
    • /
    • 2004
  • In this study, we analyze technical requirements for a 50m unmanned airship order to assure safety in the test flight operation. The 50m class unmanned airship developed by Airship Group in Korea Aerospace Research Institute(KARI). The 50m class unmanned airship was developed as a scale-down model of 200m class stratosphere unmanned airship. This study reviews specifications and characteristics of 50m class unmanned airship and develops Airworthiness Requirements on the basis of current effective Aviation Act, Airworthiness standards, and relevant international documents. The developed requirements can be applied to the safety assessment of the 200m class stratosphere unmanned airship.

  • PDF

Design of the test facility for the supersonic thrust vectoring nozzle (초음속 추력편향 노즐 실험장치 설계)

  • Jeong, Han-Jin;Choi, Seong-Man;Chang, Hyun-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.569-572
    • /
    • 2010
  • In order to study the performance characteristics of the thrust vector nozzle, the test facility and instrumentation system were designed. In this system, axial thrust, moment, exhaust gas velocity and pressure will be measured by using the scale down experimental model devices. The test facility are composed of high pressure air storage system, flow measuring and control system, test nozzle and thrust measurement system.

  • PDF