• Title/Summary/Keyword: Scale Calculation

Search Result 697, Processing Time 0.025 seconds

A Study on The Conversion Factor between Heterogeneous DBMS for Cloud Migration

  • Joonyoung Ahn;Kijung Ryu;Changik Oh;Taekryong Han;Heewon Kim;Dongho Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2450-2463
    • /
    • 2024
  • Many legacy information systems are currently being clouded. This is due to the advantage of being able to respond flexibly to the changes in user needs and system environment while reducing the initial investment cost of IT infrastructure such as servers and storage. The infrastructure of the information system migrated to the cloud is being integrated through the API connections, while being subdivided by using MSA (Micro Service Architecture) internally. DBMS (Database Management System) is also becoming larger after cloud migration. Scale calculation in most layers of the application architecture can be measured and calculated from auto-scaling perspective, but the method of hardware scale calculation for DBMS has not been established as standardized methodology. If there is an error in hardware scale calculation of DBMS, problems such as poor performance of the information system or excessive auto-scaling may occur. In addition, evaluating hardware size is more crucial because it also affects the financial cost of the migration. CPU is the factor that has the greatest influence on hardware scale calculation of DBMS. Therefore, this paper aims to calculate the conversion factor for CPU scale calculation that will facilitate the cloud migration between heterogeneous DBMS. In order to do that, we utilize the concept and definition of hardware capacity planning and scale calculation in the on-premise information system. The methods to calculate the conversion factor using TPC-H tests are proposed and verified. In the future, further research and testing should be conducted on the size of the segmented CPU and more heterogeneous DBMS to demonstrate the effectiveness of the proposed test model.

MULTI-SCALE THERMAL-HYDRAULIC ANALYSIS OF PWRS USING THE CUPID CODE

  • Yoon, Han Young;Cho, Hyoung Kyu;Lee, Jae Ryong;Park, Ik Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.831-846
    • /
    • 2012
  • KAERI has developed a two-phase CFD code, CUPID, for a refined calculation of transient two-phase flows related to nuclear reactor thermal hydraulics, and its numerical models have been verified in previous studies. In this paper, the CUPID code is validated against experiments on the downcomer boiling and moderator flow in a Calandria vessel. Physical models relevant to the validation are discussed. Thereafter, multi-scale thermal hydraulic analyses using the CUPID code are introduced. At first, a component-scale calculation for the passive condensate cooling tank (PCCT) of the PASCAL experiment is linked to the CFD-scale calculation for local boiling heat transfer outside the heat exchanger tube. Next, the Rossendorf coolant mixing (ROCOM) test is analyzed by using the CUPID code, which is implicitly coupled with a system-scale code, MARS.

Hierarchical optimisation for large scale discrete-time systems using extended interaction prediction method (확장된 상호작용 예측방법을 이용한 대규모 이산시간 시스템의 계층적 최적제어)

  • 정희태;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.223-227
    • /
    • 1987
  • This paper presents the extended interaction prediction method for large scale discrete-time systems with interconnected state and control. Feedback gain is obtained from decentralized calculation without solving Riccati equation. Hence, Computer storage and calculation time is reduced.

  • PDF

Simplified Load Calculation and Structural Test for Scale Down Model of Small Wind Turbine Blade according to IEC 61400-2 (IEC 61400-2에 의거한 소형 풍력발전용 블레이드 축소모델의 단순 하중 계산 및 구조 시험)

  • Jang, Yun-Jung;Kang, Ki-Weon
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2013
  • This study deals with simplified load calculation and structural testing for scale down model of small wind turbine blade. First, the blade was designed and produced scale down to 0.2 ratio of initial blade. And moments were acquired by simplified load calculation equations according to IEC 61400-2 standard. Also, structural test using weight was conducted to obtain the maximum moment. Therefore maximum moments were compared at calculation and test.

An investigation on the effect of the wall treatments in RANS simulations of model and full-scale marine propeller flows

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.967-987
    • /
    • 2020
  • A numerical analysis is carried out for the marine propellers in open water conditions to investigate the effect of the wall treatments in model and full scale. The standard wall function to apply the low of the wall and the two layer zonal model to calculate the whole boundary layer for a transition phenomenon are used with one turbulence model. To determine an appropriate distance of the first grid point from the wall when using the wall function, a formula based on Reynolds number is suggested, which can estimate the maximum y+ satisfying the logarithmic law. In the model scale, it is confirmed that a transition calculation is required for a model scale propeller with low Reynolds number that the transient region appears widely. While in the full scale, the wall function calculation is recommended for efficient calculations due to the turbulence dominant flow for large Reynolds number.

Wave Simulation Technique for Large-scale Optical Sensor Designs (거대 스케일 광학 센서 설계를 위한 파동 시뮬레이션(Wave Simulation) 기법 연구)

  • Yong-Hoon Lee;Tae Yoon Kwon;Muhan Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.62-65
    • /
    • 2023
  • The wave mode calculation of a large-scale optical system in comparison to the working wavelength is practically impossible because the computational cost increases exponentially. In this paper, we propose a method that can obtain the optical mode in a large-scale optical system. The method carries out simulations by dividing the calculation area into blocks and moving along the light axis along which the light propagates. By applying this method to the calculation of resonant modes in a ring-type optical resonator, which is mainly used for ring laser optical gyro sensors, the efficiency of the proposed method was verified.

Predictors of Drug Calculation Competence of Nursing Students (간호 대학생의 약물계산역량에 영향을 미치는 요인)

  • Kim, Myung Hee;Park, Jung Ha;Kim, Myoung Soo
    • Journal of Korean Biological Nursing Science
    • /
    • v.14 no.3
    • /
    • pp.174-182
    • /
    • 2012
  • Purpose: The objective of this study was to identify predictors of drug calculation competence of nursing students. Methods: A total of 120 students were recruited from 3 universities from November 10 to 20, 2011. The instruments for this study were drug calculation competence, self-efficacy for drug dosage calculation, anxiety for drug dosage calculation, and the academic self-efficacy scale. The data were analyzed by descriptive analysis, chi-square test, t-test, Scheffe test, partial correlation coefficients, and stepwise multiple regression using the SPSS 18.0 program. Results: The mean score of good competence group was $0.67{\pm}0.08$ and the mean score of no-good competence group was $0.42{\pm}0.10$. The drug calculation competence was positively related to self-efficacy for drug dosage calculation and academic self-efficacy scale, but negatively related to anxiety for drug dosage calculation after controlling personal attributes. The main predictors of drug calculation competence in nursing students were identified as anxiety for drug dosage calculation (${\beta}$=-.25, p=.046), academic self-efficacy (${\beta}$=.19, p=.035). These two factors explained about 10% of variance in drug calculation competence. Conclusion: Based on the results, the strategies reducing the anxiety for drug dosage calculation and improving the academic self-efficacy should be developed and implemented.

Performance Simulation of Part Load Operation for 2MWe Circulating Fluidized Bed Boiler (2MWe 순환유동상 보일러의 부분 부하 운전 성능 모사)

  • Kim, Taehyun;Choi, Sangmin;Hyun, Ju-soo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.35-36
    • /
    • 2012
  • Part load operation usually covers large periods of the total operation time on the economic ground and electricity demand in small-scale boilers. Performance analysis of part load behavior is very important for the purpose of boiler operation optimization. A simple thermal calculation approach is applied to predict performance of a pilot-scale circulating fluidized bed (CFB) boiler at part load operation. Verification has been carried out by comparing between calculation results an operation data of the boiler.

  • PDF

Analysis of an HTS coil for large scale superconducting magnetic energy storage

  • Lee, Ji-Young;Lee, Seyeon;Choi, Kyeongdal;Park, Sang Ho;Hong, Gye-Won;Kim, Sung Soo;Lee, Ji-Kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel

  • Lee, Jin-Tae;Kim, Young-Gi
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.41-56
    • /
    • 1995
  • Flew control devices, such as flow liners, are frequently introduced in a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section off cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the afterbody of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary taper calculation should be incorporated in order to correlate the calculated wake distribution with the measured one.

  • PDF