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1. INTRODUCTION 
 

A superconducting magnetic energy storage system 
(SMES) is well known as the highest efficient energy 
storage system with the fastest response time. The fast 
response of the SMES enables improved power quality of 
the electric power system by compensating the voltage 
dips or the frequency fluctuations. Many research and 
development projects have therefore been carried out to 
improve the power quality of micro grids. According to 
the previous studies, the capacity of the practical SMES 
should be over 5 MJ, at least to sufficiently compensate 
for the disturbances of the smallest micro power grid in 
Korea [1]. 

The single or multiple solenoids type coil is the 
s i mp l e s t  s h a p e ,  a mo n g  t h e  v a r i o u s  t yp e s  o f 
superconducting coils, to realize the high temperature 
superconducting (HTS) coil, which is the key element of 
the SMES. However, this type of coil has several issues 
that need to be overcome for application in a large scale 
HTS SMES of which the capacity is around 30 MJ or 
more [2]. One of the drawbacks of the solenoid 
superconducting coil is the high radial component of the 
magnetic flux density at the edge of the coil, which will 
have the major effect on the performance of the HTS 

conductor. The large stray magnetic field is another 
problem of the solenoid type HTS coil. Therefore, most of 
the development projects for the practical SMES coil take 
a toroid shape, which can minimize the highest radial 
component magnetic flux density on the HTS conductor 
in order to maximize the energy density of the HTS coil. 
The stray magnetic field from the toroid type coil can be 
decreased compared to that from the solenoid type coil [3]. 

However, the realization of the practical toroid type 
coil also includes other difficulties. First, it is difficult to 
wind the toroid shape HTS coil. Moreover, the estimation 
of the maximum radial component of the magnetic flux 
density applied on the HTS conductor is difficult. This 
estimation is essential for the design process of the HTS 
SMES coil because the maximum radial component of the 
magnetic flux directly affects the decision of the 
operational current density of the HTS SMES coil. The 3-
dimensional topology of the toroid type coil causes 
difficulty, so we need a 3-dimensoinal numerical 
calculation to obtain the exact magnetic field distribution. 
The computer simulation calculation required such as 
finite element method (FEM) is very time consuming. 
Usually, the simulation of a toroid model coil can take 
minutes or hours at a time, depending on the size and 
complexity of the model. The optimization process of the 
design work generally needs hundreds of iterated 
calculations, so it may take several hours or even days to 
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Abstract 
 

It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component 
of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic 
field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular 
magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field 
cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for 
an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored 
energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually 
been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which 
leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to 
determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were 
able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for 
sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability 
of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar 
method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work. 
 
Keywords: SMES, Toroid, Magnetic Field, Stored energy 
 
 

* Corresponding author: wskim@kpu.ac.kr 



 
Analysis of an HTS coil for large scale superconducting magnetic energy storage 

 
 

obtain one set of optimal design parameters of an HTS 
SMES coil. 

In this paper, we suggest a fast estimation method to 
obtain the maximum radial component of the magnetic 
flux density of the HTS toroid type coil. We assumed that 
the toroid type SMES coil will be assembled with a set of 
single pancake HTS coils arranged as a toroid form, 
which is the typical shape of the HTS toroid type coil. 
Because this type of arrangement has a periodic 
symmetry, each pancake coil has the identical maximum 
radial component of magnetic flux density at the same 
point in each local coordinate. The magnetic flux density 
at the arbitrary point could be calculated using the 
superposition of the magnetic flux densities generated at 
the point from each pancake coil. Using this method, we 
could reduce the calculation time considerably compared 
to the computation time with 3-dimensional simulation by 
FEM. 

Similar to the preceding study “Calculation of Normal 
Fields to Superconducting Tape of Toroidal Type 
Winding With Circular Section" [4], but there is a 
difference between this paper, we used a statistical 
method to obtain a self field calculation mentioned in the 
M.N.Wilson’s book [5]. And the point of this paper is that 
we achieve a remarkable reduction of the calculation time 
by using this method. 
 
 

2. CALCULATION OF MAGNETIC FIELD 
 

2.1. Calculation of the maximum radial magnetic field 
Because a typical HTS conductor as a wire for winding 

coil assumes the shape of a tape, the usual HTS coil forms 
single or double pancake winding. A number of HTS 
pancake coils are to be arranged as a toroid form and 
connected in series to realize a large scale HTS SMES 
coil. Fig. 1 shows a typical arrangement of the toroid type 
HTS coils with the design parameters such as diameter, 
number of pancake coils, and the radial build of each 
pancake coil. All of the design parameters in Fig. 1 used 
to define an HTS SMES coil are listed in Table 1.  

The radial component of the magnetic flux density is 
very important because the critical current of the HTS 
tape is strongly affected by the magnetic flux density, 
which is applied perpendicularly on the surface of the 
HTS tape. According to the previous calculation result 
from the 3-dimensional FEM simulations, the general 
point at which the radial  magnetic flux density of SPC 
becomes a maximum value is the mid-point of the side 
surface of each pancake coil. Fig. 2(a) shows the points of 
maximum radial magnetic flux density of SPC on a 
pancake coil.  

 
 

Fig. 1. Design parameters of the toroid type SMES HTS 
coil. 

TABLE I 
 DESIGN PARAMETERS OF HTS TOROID SMES COIL. 

Symbol Quantity Dimension 

A Inner radius of toroid [mm] 

B Inner radius of pancake coil [mm] 

w Width of HTS tape [mm] 

t Thickness of HTS tape [mm] 

N Number of turns of pancake [turns] 

I Operating Current [A] 

SPC Number of pancakes in toroid [ea] 

 
The maximum radial magnetic flux density of SPC at 

this point is actually the superposition of the magnetic 
flux densities from all of the pancake coils. According to 
the periodic symmetry, all the pancake coils are in the 
same condition, so we only need to calculate the 
maximum magnetic field in one pancake coil. We suggest 
calculating this maximum magnetic flux density using the 
summation of the self-field and the magnetic field 
generated from all the other pancake coils..The self-field 
refers to the magnetic field from the pancake coil which 
contains the point to be calculated. 

Because the self-field cannot be obtained using the 
analytic calculation, we considered numerical 
computation to obtain this value. However, numerical 
computation is time consuming, even for a simple 
pancake coil. We attempted to perform pre-calculations of 
a ratio of the central magnetic field and the maximum 
radial magnetic field as a function of the shape parameters 
of the single pancake coil using the numerical 
computation.  

The central magnetic flux density in a pancake coil, 𝐵0 
in Fig. 2 (a), can easily be calculated by integrating the 
contributions from individual circular current filaments, 
to find 

 
𝐵0 = 𝐽 ∙ 𝑎 ∙ 𝐹(𝛼,𝛽)                                                      (1) 

 
where 

 

F(𝛼,𝛽) = 𝜇0 ∙ 𝛽 ∙ 𝑙𝑛 �
𝛼 + �𝛼2 + 𝛽2

1 + �1 + 𝛽2
�      ,              (2) 

 
while α = 𝑏 𝑎⁄ , β = 𝑤 2𝑎⁄ , and J  is the average overall 
current density [5]. In order to find the radial maximum  
 

 
(a)                                     (b) 

 

Fig. 2. HTS pancake coils for SMES; (a) single pancake 
coil, (b) arrangement of the HTS pancake coils for toroid 
type SMES coil. 
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flux density from the self-field, we need to find the ratio 
of the maximum radial magnetic flux density to the 
central magnetic flux density, 𝐵𝑥 𝐵0⁄ , as a function of α 
and β using the numeric computation.  

Fig. 3. shows graphs for the ratio, which is the function 
T(𝛼,𝛽) in this paper. We can derive the maximum radial 
magnetic flux density of SPC from the self-field by using 
this ratio, to find 

 
𝐵𝑥,𝑠𝑓 = 𝐵0 ∙ 𝑇(𝛼,𝛽)                                                     (3)

  
The maximum radial magnetic flux density of SPC 

from the other coils can be obtained by integrating the 
magnetic field with all the other current filaments. For 
simplification, we assumed that all the other pancake coils 
were  circular line currents. Fig. 2(b) shows the 
contributions of all other pancake coils to the same point 
of maximum radial field. According to the line current 
assumption, we can integrate the individual contribution 
of each pancake coil. 
 

 
(a) 
 

 
(b) 

 
Fig. 3. Plots of the ratio of the maximum radial magnetic 
flux density to the central magnetic flux density, 𝐵𝑥 𝐵0⁄  , 
as a function of α and β obtained by numeric computation; 
(a) 3-dimensional plot, (b) contour plot. 

2.2. Calculation of External Field by other coils 
We assumed a current in each pancake coil of the 

toroid type coil as a line current for calculation of the 
external field. We used the Biot-Sarvart Law, which is a 
basic law used to obtain the magnetic field produced by 
the coil current, which is expressed by (4). Therefore, we 
calculated the magnetic field directly at the mid-point of 
the C1 coil, as shown in Fig. 2(b), generated from the 
other pancake coil currents. 

Fig. 4. shows the line currents in the toroid type coil in 
the Cartesian coordinate system. 

The coil over the XZ plane is shown in Fig. 5(a) and is 
used to find the position coordinates of the line current 
coil placed in the toroid type in a Cartesian coordinate 
system. The gap of a differential current in the coil which 
is over the XZ plane is Φ and the coordination of the line 
current is (5). 
 

(X, Z) = (R + r + rcosϕ , rsinϕ)                        (4) 
 

Similarly, Fig. 5(b) shows the coil which is over the 
XY plane. 

The next coil which is relative to the coil in the X-axis 
is placed at a gap of θ. The position of the first coil in the 
XY plane is (5) 
 

(X, Y) = (R + r + rcosϕ, 0)                 (5) 
 
and the second position of the coil rotated by θ is (6). 
 
(X, Y) = ((R + r + rcosϕ)cosθ, (R + r + rcosϕ)sinθ (6) 
 

 
 

Fig. 4. Toroid type coil disposed in the XYZ space. 
 

 
                      (a)                                     (b) 
 

Fig. 5. Toroid coil coordinates; (a) coil coordination in 
XZ plane plane (‘R’ is radius of toroid and ‘r’ is radius of 
SPC), (b) coil coordination in XY.  
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According to formulas (4) and (6), the position 
coordinates of the coil located in the toroidal type in a 
Cartesian coordinate system can be expressed as formula 
(7). 
 

(X, Y, Z) = �(R + r + rcosϕ)cosθ, (R + r        
+ rcosϕ)cosθ, rsinϕ�          (7) 

 
Using the coordinates of the coil obtained in formula 

(4), we calculate a magnetic field acting on the mid-point 
of C1 resulting from the C2,C3,…,Cn coil using the Bio-
Sarvart Law. 
 

dB =
𝜇0
4𝜋

𝐼𝑑𝐿�⃗ × 𝑟̂
𝑟2                                           (8) 

 
(𝜇0: 𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑖𝑟, 𝐼: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑟: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠) 

 
 

3. RESULT 
 

The formula used to calculate the maximum 
perpendicular magnetic field is completed using the sum 
of the magnetic field in the self field and the other coil. 

To compare with the perpendicular magnetic field 
according to the number of pancakes in the toroid 
calculated using the calculation method proposed in this 
paper and measured by FEM.  

Fig. 6. shows that the perpendicular magnetic field 
calculated by a formula and FEM differ within an error of 
approximately 8%. As shown in Table.3, we represent the 
time required to run the MATLAB with the calculation 
method and using the FEM method. The FEM method 
takes more than 422 seconds, depending on the model, 
but running the MATLAB using the calculating method 
takes around 3 seconds. An improved speed of calculation 
time of 99 times can be expected. 
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Fig. 6. Comparison of calculation results and FEM; 
perpendicular magnetic field according to number of SPC. 

 
TABLE Ⅱ 

 MAXIMUM ERROR OF FEM AND CALCULATION. 
Model The maximum error(%) 

R200, r50 
R200, r100 
R300, r100 

3.4% 
3.39% 
8.08% 

TABLE Ⅲ  
COMPARISON OF TIME FROM FEM AND CALCULATION. 

 FEM Calculation 
Radius of Toroid, 

R[mm] 200 200 300 200 200 300 

Radius of SPC, 
r[mm] 50 100 100 50 100 100 

Number of SPC[ea] 80 90 100 80 90 100 

Running Time[sec] 422 298 337 2.82 3.07 3.46 

 
Fig. 6. shows that the perpendicular magnetic field 

calculated by a formula and FEM differ within an error of 
approximately 8%. As shown in Table.3, we represent the 
time required to run the MATLAB with the calculation 
method and using the FEM method. The FEM method 
takes more than 422 seconds, depending on the model, 
but running the MATLAB using the calculating method 
takes around 3 seconds. An improved speed of calculation 
time of 99 times can be expected. 

We have assumed that SPC current is the line current 
but is actually the volume current. So that difference 
causes an error. In the next study we study for reducing 
the error, SPC current is composed of several lines 
current to simulate the volume current. 
 
 

4. CONCLUSION 
 

This paper suggests a fast estimation of a perpendicular 
magnetic field in a toroid coil for a large scale SMES. 
The calculation suggested in this paper showed a 
remarkable reduction (99% of calculation time with 3-D 
FEM) of running time by using an analytic and statistical 
calculation. 

More detailed calibrations are still needed to improve 
the accuracy of the calculation. In addition, we carry out 
similar processes to obtain the stored energy and the 
maximum mechanical stress in progress. 
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