• Title/Summary/Keyword: Scaffold

Search Result 650, Processing Time 0.024 seconds

Computer-aided Design and Fabrication of Bio-mimetic Scaffold for Tissue Engineering Using the Triply Periodic Minimal Surface (삼중 주기적 최소곡면을 이용한 조직공학을 위한 생체모사 스캐폴드의 컴퓨터응용 설계 및 제작)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.834-850
    • /
    • 2011
  • In this paper, a novel tissue engineering scaffold design method based on triply periodic minimal surface (TPMS) is proposed. After generating the hexahedral elements for a 3D anatomical shape using the distance field algorithm, the unit cell libraries composed of triply periodic minimal surfaces are mapped into the subdivided hexahedral elements using the shape function widely used in the finite element method. In addition, a heterogeneous implicit solid representation method is introduced to design a 3D (Three-dimensional) bio-mimetic scaffold for tissue engineering from a sequence of computed tomography (CT) medical image data. CT image of a human spine bone is used as the case study for designing a 3D bio-mimetic scaffold model from CT image data.

Effect of Elementary Students' Understandings about Principle of Land and Sea Breeze Using Incense Smoke on the outside of Convection Current Box as a Scaffold in Convection Current Box Experiment (대류상자 밖의 향 연기 이동을 비계로 활용한 대류상자 실험이 초등학생들의 해륙풍의 원리 이해에 미치는 효과)

  • Kang, Wonmi;Shin, Aekyung;Hyun, Donggeul;Chae, Donghyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.3
    • /
    • pp.387-398
    • /
    • 2015
  • The purposes of this study were to analyze the effect of a scaffold to help in understanding the principle of land and sea breeze through the convection current box experiment and to analyze the students' inference abilities and analogy abilities. For this purpose, the 60 elementary students who had not learned the principle of land and sea breeze were surveyed and analyzed. When using the scaffold to compare the movement of the incense smoke in the convection current box with that of the incense smoke on the outside of the convection current box, the rate of the students who correctly understood the principle of the land and sea breeze between the sea and the land was very low. The result shows that the scaffold used in this study do not help sufficiently in understanding the principle of the land and sea breeze through analogy and it is necessary to introduce a new scaffold for the elementary students to understand it.

Porous Hyaluronic Acid-Gelatin Loaded Sponge Biphasic Calcium Phosphate Scaffold for Bone Implant Application

  • Nguyen, Thuy Ba Linh;Kim, Shin-Woo;Min, Young-Ki;Yang, Hun-Mo;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.35.2-35.2
    • /
    • 2011
  • In this study, hyaluronic acid (HyA) - Gelatin (Gel) hydrogels were prepared at ratio of 15:85 with the goal of obtaining a high uniform porosity and porous biocompatibility scaffold for bone tissue engineering applications. In order to develop a proper scaffold for bone implant application, a HyA-Gel hydrogel loaded in sponge Biphasic Calcium Phosphate (BCP) was prepared. To assay the cytocompatibility and cell behavior on the HyA-Gel hydrogel and HyA-Gel/BCP scaffold, cell attachment and spreading of MSCs seeded on the scaffolds were studied. An invivo study was performed for HyA-Gel/BCP scaffolds after 1 and 3 months implantation. Our results provide a novel and simple method to obtain an adequate scaffold for osteoblast cells and indicate that HyA-Gel hydrogel and HyA-Gel/BCP scaffold could be a good candidate for bone tissue engineering scaffolds.

  • PDF

A study on the accident prevention survey and improvement of the horse scaffolding in the construction site (건설현장 말비계 재해예방 실태조사와 개선에 관한 연구)

  • Jeong, Seong-Chun;Lee, Ro-Na
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.2
    • /
    • pp.37-46
    • /
    • 2016
  • Due to increased demand for remodeling and repair in construction market in recent year, the usage of horse scaffold is increasing in the indoor finish works. Injuries related horse scaffold are mainly caused by poor installation or of careless handling of scaffold. Approximately 300 workers are injuried at construction site every year, it is accounting for about 1.5% of the total construction sector and has increased on a year-to-year trends. But the main contents between national standards and speccifications related to the manufacture and usage of horse scaffolds are mutually inconsistent, In particular, the rules on occupational safety and health standards are the basis for the prevention of industrial injuries, there is no explicit application being made to the horse scaffold commonly used on construction sites. The purpose of this study was to analye the manufacture and usage situations in order to reduce construction injuries that occur at the horse scaffolds. It will be utilized the results of the analysis as the basis data for unifying the major domestic standards and specifications associated with the manufacture and usage of horse scaffold.

Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion with Pure and Mixed Solvents (순수용매와 혼합용매를 이용한 상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조)

  • Kim, Young Kyoung;Cho, Yu Song;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2015
  • This paper reports a fabrication of poly(L-lactic acid) (PLLA) scaffold membranes through phase separation process using pure and mixed solvents. Chloroform and 1,4-dioxane were used as pure solvents and mixed solvents were obtained by mixing the pure solvents together. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. Scaffold membranes from the solution with pure chloroform showed solid-wall pore structure. In contrast, nano-fibrous membranes were fabricated from the solution with pure 1,4-dioxane. In case of mixed solvents, the scaffold membranes showed various structures with changing composition of the solvents. When 1,4-dioxane content was lower than 20 wt% in the solvent, scaffold membrane showed solid-wall pore structure. When the content was 20 wt%, scaffold membranes with macropores with the maximum size of $100{\mu}m$ was obtained. In the concentration range of 1,4-dioxane over 25 wt%, the scaffold membranes showed nano-fibrous structures. In this range, the fibers showed different diameters with changing composition of the solvent. The minimum fiber diameter was about $15{\mu}m$, when 1,4-dioxane composition was 80 wt%. These results indicate that the composition of the solvent showed a significant effect on the structure of scaffold membrane.

In vivo Osteogenesis of Cultured Human Periosteal-derived Cells and Polydioxanone/Pluronic F127 Scaffold (인간 골막기원세포와 Polydioxanone/Pluronic F127 담체를 이용한 골형성)

  • Park, Bong-Wook;Lee, Jin-Ho;Oh, Se-Heang;Kim, Sang-June;Hah, Young-Sool;Jeon, Ryoung-Hoon;Maeng, Geun-Ho;Rho, Gyu-Jin;Kim, Jong-Ryoul;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.6
    • /
    • pp.384-390
    • /
    • 2012
  • Purpose: The purpose of this study is to examine in vivo osteogenesis of cultured human periosteal-derived cells and polydioxanone/pluronic F127 scaffold. Methods: Two one-year-old miniature pigs were used in this study. $2{\times}10^6$ periosteal-derived cells in 1 mL medium were seeded by dropping the cell suspension into the polydioxanone/pluronic F127 scaffold. These cell-scaffold constructs were cultured in osteogenic Dulbecco's modified Eagle's medium for 7 days. Under general anesthesia with azaperone and tiletamine-zolazepam, the mandibular body and ramus of the pigs were exposed. Three bony defects were created. Polydioxanone/pluronic F127 scaffold with periosteal-derived cells and the scaffold only were implanted into each defect. Another defect was left empty. Twelve weeks after implantation, the animals were sacrificed. Results: New bone formation was clearly observed in the polydioxanone/pluronic F127 scaffold with periosteal-derived cells. Newly generated bone was also observed in the scaffold without periosteal-derived osteoblasts and empty defect, but was mostly limited to the periphery. Conclusion: These results suggest that cultured human periosteal-derived cells have good osteogenic capacity in a polydioxanone/pluronic F127 scaffold, which provides a proper environment for the osteoblastic differentiation of these cells.

Sustained Release of Proteins Using Small Intestinal Submucosa Modified PLGA Scaffold (SIS로 개질된 PLGA 담체에서의 단백질의 서방화)

  • Ko, Youn-Kyung;Choi, Myung-Kyu;Kim, Soon-Hee;Kim, Geun-Ah;Lee, Hai-Bang;Rhee, John-M.;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.199-205
    • /
    • 2008
  • In this study, we fabricated poly (lactide-co-glycolide) (PLGA) scaffold modified with small intestinal submucosa (SIS) as a drug delivery matrix of bioactive molecules. SIS derived from the submucosa layer of porcine intestine has been widely used as biomaterial because of low immune response. PLGA scaffold was prepared by the method of solvent casting/salt leaching. Novel composite scaffolds of SIS/PLGA were manufactured by simple immersion method of PLGA scaffold in SIS solution under vacuum. SEM observation shows that PLGA and SIS/PLGA scaffolds have interconnective and open pores. Especially, SIS/PLGA scaffold showed that micro-sponge of SIS with interconnected pore structures were formed in the pores of PLGA scaffold. In order to assay release profile of proteins, we manufactured FITC conjugated BSA loaded PLGA and SIS/PLGA scaffold. And the release amount was identified by fluorescence intensity using the fluorescence spectrophotometer. The initial burst of BSA containing SIS/PLGA scaffolds was lower than that of PLGA scaffolds resulting in constant release. And release of BSA in SIS/PLGA scaffold was fast and incremental because of the increased content of BSA. In conclusion, we confirmed that penetrated SIS solution prevented the initial burst of BSA and PLGA modified with SIS scaffold is useful as protein carriers with controlled release pattern.

Performance Improvement of Polymer Deposition System by Nozzle Guide and Its Application to Washer Scaffold Fabrication (노즐 가이드를 적용한 폴리머 적층 시스템의 Washer Scaffold 제작을 위한 성능 개선)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.249-257
    • /
    • 2013
  • Rapid prototyping was used to design and develop a three-dimensional (3D) scaffold for tissue engineering application. In this study, the nozzle guide (TB-CP-HN, MUSASHI ENGINEERING, INC., JAPAN) used with the syringe of the polymer deposition system (PDS) was evaluated by measuring the scaffold line width and height. 3D scaffolds were fabricated using a biodegradable polymer called poly-caprolactone (PCL). The PCL polymer can be deposited from the needle of a syringe using a 200-${\mu}m$ precision nozzle, at a pressure of 600 kPa and temperature of $125^{\circ}C$. The advantages and improvements in this nozzle guide were addressed through washer scaffold fabrication. Overall, this research indicated that the fabrication of a complex-shaped scaffold using an enhanced polymer deposition system may have potential for tissue engineering.

Load-carrying capacities and failure modes of scaffold-shoring systems, Part I: Modeling and experiments

  • Huang, Y.L.;Chen, H.J.;Rosowsky, D.V.;Kao, Y.G.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.53-66
    • /
    • 2000
  • This paper proposes a simple numerical model for use in a finite analysis (FEA) of scaffold-shoring systems. The structural model consists of a single set of multiple-story scaffolds with constraints in the out-of-plane direction at every connection joint between stories. Although this model has only two dimensions (termed the 2-D model), it is derived from the analysis of a complete scaffold-shoring system and represents the structural behavior of a complete three-dimensional system. Experimental testing of scaffolds up to three stories in height conducted in the laboratory, along with an outdoor test of a five-story scaffold system, were used to validate the 2-D model. Both failure modes and critical loads were compared. In the comparison of failure modes, the computational results agree very well with the test results. However, in the comparison of critical loads, computational results were consistently somewhat greater than test results. The decreasing trends of critical loads with number of stories in both the test and simulation results were similar. After investigations to explain the differences between the computationally and experimentally determined critical loads, it was recommended that the 2-D model be used as the numerical model in subsequent analysis. In addition, the computational critical loads were calibrated and revised in accordance with the experimental critical loads, and the revised critical loads were then used as load-carrying capacities for scaffold-shoring systems for any number of stories. Finally, a simple procedure is suggested for determining load-carrying capacities of scaffold-shoring systems of heights other than those considered in this study.

Comparative Study of Seeding and Culture Methods to Vascular Smooth Muscle Cells on Biodegradable Scaffold

  • Kim, Dong-Ik;Park, Hee-Jung;Eo, Hyun-Seoun;Suh, Soo-Won;Hong, Ji-Hee;Lee, Min-Jae;Kim, Jong-Sung;Jang, In-Sung;Kim, Byung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.707-714
    • /
    • 2004
  • How to improve the cell culture method on scaffolds is important in the tissue engineering fileld. In this study, we optimized seeding and culture methods to vascular smooth muscle cells (VSMCs) on biodegradable polymer scaffold. The primary culture of VSMCs obtained from canine external jugular vein was accomplished by applying the explant-derived method. The primary cultured VSMCs were seeded into scaffolds and then cultured by using various different methods; static or dynamic seeding, static or dynamic culture. The difference in proliferative response of VSMCs was analyzed with an alamar blue assay. Cell-polymer construct was examined by histochemical method and scanning electron microscopy. Mesh type scaffold ($10 \times 10 \times0.4 mm$) was made of polyglycolic acid (PGA) suture thread. The PGA mesh type scaffold was 45% in porosity, and 0.03 g in weight. The primary cultured VSMCs were confirmed with immunohistochemical staining using monoclonal anti-$\alpha$-smooth muscle actin. The density and distribution of proliferated VSMCs within the scaffold and cellular adherence on the surface of the scaffold showed better results in the static seeding condition than in the dynamic condition. Under the same condition of seeding method as the static condition, the dynamic culture condition showed enhanced proliferation rates of the VSMCs when compared to the static culture condition. In conclusion, to improve the VSMCs proliferation in vitro, static seeding is better than the dynamic condition. In the culture condition, however, culture under the dynamic status is better than the static condition. This was a pilot study to manufacture artificial vascular vessel by tissue engineering.