• Title/Summary/Keyword: Satellites data

Search Result 668, Processing Time 0.028 seconds

STUDY OF DETERMINISM OF DATA INTEGRITY DURING I/O DATA EXCHANGE BETWEEN TASKS AND DEVICE

  • Koo, Cheol-Hea;Park, Su-Hyun;Kang, Soo-Yeon;Yang, Koon-Ho;Choi, Sung-Bong
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.77-80
    • /
    • 2007
  • In this paper, the method which can protect the situation of possible data corruption when collision has happened during I/O data exchange between device and tasks is presented. Also, an example diagram of mechanism according to this introduced method is shown and the effect and merits and demerits of the method is evaluated.

  • PDF

Characteristics of Relative Navigation Algorithms Using Laser Measurements and Laser-GPS Combined Measurements

  • Kang, Dae-Eun;Park, Sang-Young;Son, Jihae
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.287-293
    • /
    • 2018
  • This paper presents a satellite relative navigation strategy for formation flying, which chooses an appropriate navigation algorithm according to the operating environment. Not only global positioning system (GPS) measurements, but laser measurements can also be utilized to determine the relative positions of satellites. Laser data is used solely or together with GPS measurements. Numerical simulations were conducted to compare the relative navigation algorithm using only laser data and laser data combined with GPS data. If an accurate direction of laser pointing is estimated, the relative position of satellites can be determined using only laser measurements. If not, the combined algorithm has better performance, and is irrelevant to the precision of the relative angle data between two satellites in spherical coordinates. Within 10 km relative distance between satellites, relative navigation using double difference GPS data makes more precise relative position estimation results. If the simulation results are applied to the relative navigation strategy, the proper algorithm can be chosen, and the relative position of satellites can be estimated precisely in changing mission environments.

A Study on Standardization of Data Bus for Modular Small Satellite (모듈화 소형위성의 Data Bus 표준화 방안 연구)

  • Jang, Yun-Uk;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.620-628
    • /
    • 2010
  • Small satellites can be used for various space research and scientific or educational purposes due to advantages in small size, low-cost, and rapid development. Small Satellites have many advantages of application to Responsive Space. Compared to traditional larger satellites, however, Small satellites have many constraints due to limitations in size. Therefore, it is difficult to expect high performance. To approach maximum capability with minimal size, weight, and cost, standard modular platform of Small satellites is necessary. Modularity supports plug-and-play architecture. The result is Small satellites that can be combined quickly and reliably using plug-and-play mechanisms. For communication between modules, standard bus interface is needed. Controller Area Network(CAN) protocol is considered optimum data bus for modular Small satellite. CAN can be applied to data communication with high reliability. Hence, design optimization and simplification can also be expected. For ease of assembly and integration, modular design can be considered. This paper proposes development method for standardized modular Small satellites, and describes design of data interface based on CAN and a method of testing for modularity.

SPECTROSCOPIC OBSERVATIONS OF GEO-STAT10NARY SATELLITES OVER THE KOREAN PENINSULA (한반도 주변상공의 정지궤도 인공위성 분광관측1)

  • 이동규;김상준;한원용;박준성;민상웅
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.101-108
    • /
    • 2001
  • Low resolution spectroscopic observations of leo-stationary satellites over the Korean peninsula have been carried out at the KyungHee Optical Satellite Observing Facility (KOSOF) with a 40cm telescope. We have observed 9 telecommunication satellites and 1 weather satellite of 6 countries. The obtained spectral data showed that satellites could be classified and grouped with similar basic spectral feature. We divided the 10 satellites into 4 groups based on spectral slop and reflectance. It is suggested that the material types of the satellites can be determined through spectral comparisons with the ground laboratory data. We will continuously observe additional geo-stationary satellites for the accurate classification of spectral features.

  • PDF

Design and Test Flash-based Storage for Small Earth Observation Satellites (소형 지구 관측 위성용 플래시 기반 저장장치 설계 및 시험)

  • Baek, Inchul;Park, Hyoungsic;Hwang, Kiseon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.253-259
    • /
    • 2018
  • Recently, small satellite industries are rapidly changing. Demand for high performance small satellites is increasing with the expansion of Earth Observation Satellite market. A next-generation small satellites require a higher resolution image storage capacity than before. However, there is a problem that the HW configuration of the existing small satellite image storage device could not meet these requirements. The conventional data storing system uses SDRAM to store image data taken from satellites. When SDRAM is used in small satellite platform of a next generation, there is a problem that the cost of physical space is eight times higher and satellite price is two times higher than NAND Flash. Using the same satellite hardware configuration for next-generation satellites will increase the satellite volume to meet hardware requirements. Additional cost is required for structural design, environmental testing, and satellite launch due to increasing volume. Therefore, in order to construct a low-cost, high-efficiency system. This paper shows a next-generation solid state recorder unit (SSRU) using MRAM and NAND Flash instead of SDRAM. As a result of this research, next generation small satellite retain a storage size and weight and improves the data storage space by 15 times and the storage speed by 4.5 times compare to conventional design. Also reduced energy consumption by 96% compared to SDRAM based storage devices.

Development of a Reduction Algorithm of GEO Satellite Optical Observation Data for Optical Wide Field Patrol (OWL)

  • Park, Sun-youp;Choi, Jin;Jo, Jung Hyun;Son, Ju Young;Park, Yung-Sik;Yim, Hong-Suh;Moon, Hong-Kyu;Bae, Young-Ho;Choi, Young-Jun;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.201-207
    • /
    • 2015
  • An algorithm to automatically extract coordinate and time information from optical observation data of geostationary orbit satellites (GEO satellites) or geosynchronous orbit satellites (GOS satellites) is developed. The optical wide-field patrol system is capable of automatic observation using a pre-arranged schedule. Therefore, if this type of automatic analysis algorithm is available, daily unmanned monitoring of GEO satellites can be possible. For data acquisition for development, the COMS1 satellite was observed with 1-s exposure time and 1-m interval. The images were grouped and processed in terms of "action", and each action was composed of six or nine successive images. First, a reference image with the best quality in one action was selected. Next, the rest of the images in the action were geometrically transformed to fit in the horizontal coordinate system (expressed in azimuthal angle and elevation) of the reference image. Then, these images were median-combined to retain only the possible non-moving GEO candidates. By reverting the coordinate transformation of the positions of these GEO satellite candidates, the final coordinates could be calculated.

METHODOLOGY TO ENHANCE THE PREDICTABILITY OF I/O DATA EXCHANGE BETWEEN DEVICE AND TASKS (장치와 태스크 간 입출력 데이터 교환의 예측성 향상 방안)

  • Koo, Cheol-Hea;Yang, Koon-Ho;Choi, Seong-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.451-456
    • /
    • 2007
  • Data coming from devices shall be transported to a specific task to be used in a software with the most accurate time and data integrity. During this process, a potential cause for invoking structured hazard and performance degradation is dormant. In this paper, a method which can protect the data integrity from the possible data corruption when collision has happened during I/O data exchange between device and tasks is presented. Also, an example diagram of mechanism according to the method is shown and the effect, merits and demerits of the method is evaluated.

Development of Solar-Meteorological Resources Map using One-layer Solar Radiation Model Based on Satellites Data on Korean Peninsula (위성자료 기반의 단층태양복사모델을 이용한 한반도 태양-기상자원지도 개발)

  • Jee, Joonbum;Choi, Youngjean;Lee, Kyutae;Zo, Ilsung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.56.1-56.1
    • /
    • 2011
  • The solar and meteorological resources map is calculated using by one-layer solar radiation model (GWNU model), satellites data and numerical model output on the Korean peninsula. The Meteorological input data to perform the GWNU model are retrieved aerosol optical thickness from MODIS (TERA/AQUA), total ozone amount from OMI (AURA), cloud fraction from geostationary satellites (MTSAT-1R) and temperature, pressure and total precipitable water from output of RDAPS (Regional Data Assimilation and Prediction System) and KLAPS (Korea Local Analysis and Prediction System) model operated by KMA (Korea Meteorological Administration). The model is carried out every hour using by the meteorological data (total ozone amount, aerosol optical thickness, temperature, pressure and cloud amount) and the basic data (surface albedo and DEM). And the result is analyzed the distribution in time and space and validated with 22 meteorological solar observations. The solar resources map is used to the solar energy-related industries and assessment of the potential resources for solar plant. The National Institute of Meteorological Research in KMA released $4km{\times}4km$ solar map in 2008 and updated solar map with $1km{\times}1km$ resolution and topological effect in 2010. The meteorological resources map homepage (http://www.greenmap.go.kr) is provided the various information and result for the meteorological-solar resources map.

  • PDF

Analysis of a Simulated Optical GSO Survey Observation for the Effective Maintenance of the Catalogued Satellites and the Orbit Determination Strategy

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Son, Ju-Young;Park, Sun-youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.237-245
    • /
    • 2015
  • A strategy is needed for a regional survey of geosynchronous orbits (GSOs) to monitor known space objects and detect uncataloged space objects. On the basis of the Inter-Agency Debris Committee's recommendation regarding the protected region of geosynchronous Earth orbit (GEO), target satellites with perigee and apogee of $GEO{\pm}200km$ and various inclinations are selected for analysis. The status of the GSO region was analyzed using the satellite distribution based on the orbital characteristics in publicly available two-line element data. Natural perturbation effects cause inactive satellites to drift to two stable longitudinal points. Active satellites usually maintain the designed positions as a result of regular or irregular maneuver operations against their natural drift. To analyze the detection rate of a single optical telescope, 152 out of 412 active satellites and 135 out of 288 inactive satellites in the GSO region were selected on the basis of their visibility at the observation site in Daejeon, Korea. By using various vertical view ranges and various numbers of observations of the GSO region, the detection efficiencies were analyzed for a single night, and the numbers of follow-up observations were determined. The orbital estimation accuracies were also checked using the arc length and number of observed data points to maintain the GSO satellite catalog.

A Mathematical Model for Optimal Communication Scheduling between Multiple Satellites and Multiple Ground Stations (다수의 인공위성-지상국 간 통신 스케줄 최적화 모형)

  • Jeong, Eugine;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • In the satellite operation phase, a ground station should continuously monitor the status of the satellite and sends out a tasking order, and a satellite should transmit data acquired in the space to the Earth. Therefore, the communication between the satellites and the ground stations is essential. However, a satellite and a ground station located in a specific region on Earth can be connected for a limited time because the satellite is continuously orbiting the Earth, and the communication between satellites and ground stations is only possible on a one-to-one basis. That is, one satellite can not communicate with plural ground stations, and one ground station can communicate with plural satellites concurrently. For such reasons, the efficiency of the communication schedule directly affects the utilization of the satellites. Thus, in this research, considering aforementioned unique situations of spacial communication, the mixed integer programming (MIP) model for the optimal communication planning between multiple satellites and multiple ground stations (MS-MG) is proposed. Furthermore, some numerical experiments are performed to verify and validate the mathematical model. The practical example for them is constructed based on the information of existing satellites and ground stations. The communicable time slots between them were obtained by STK (System Tool Kit), which is a well known professional software for space flight simulation. In the MIP model for the MS-MG problems, the objective function is also considered the minimization of communication cost, and ILOG CPLEX software searches the optimal schedule. Furthermore, it is confirmed that this study can be applied to the location selection of the ground stations.