STUDY OF DETERMINISM OF DATA INTEGRITY DURING I/O
DATA EXCHANGE BETWEEN TASKS AND DEVICE

Cheol-hea Koo*, Su-hyun Park*, Soo-yeon Kang*, Koon-ho Yang*, Sung-bong Choi**

*Communication Satellites Dept, COMS Program Office, Korea Aerospace Research Institute, Daejeon, 305-333,
Korea
E-mail : chkoo(@kari.re.kr
**Communication Satellites Dept, Korea Aerospace Research Institute, Daejeon, 305-333, Korea

ABSTRACT In this paper, the method which can protect the situation of possible data corruption when collision has
happened during I/O data exchange between device and tasks is presented. Also, an example diagram of mechanism
according to this introduced method is shown and the effect and merits and demerits of the method is evaluated.

KEY WORDS: Determinism, Data processing, Predictability, Data integrity

1. INTRODUCTION

Most processing power is consumed by improper
handling of iput/output process on device. So /O
interface between software and device is crucial for
overall software performance evaluation. Many research
has been performed so that this kind of overhead could be
minimized. And improper handling can cause stuck of
overall processing like as deadlock. Priority inversion is
the most representative behaviour when a corruption
between the usage of shared resources is happened.

These problem can be cured by proper scheduling
between task and devices. First of all, predictability
should be guaranteed for the periodic and sporadic I/O
processing of devices. This paper presents the method
how to save the consumption of processing power during
acquiring the I/O data from the devices through tasks.

2. FUNDAMENTAL PROCESISNG OF TASK

CSonsor >

actuator | <=

MIL-STD-1553B
/ Bi-level

MIL-STD-1553B
/ Bi-level

Figure 2. Data exchange diagram

6. execute

The behaviour of tasks which control the /O
processing from device consists of three parts as we can
see the Figure 1.

task
Physical Input wait for completion of
Processing receiving input data
b
Numerical processing & creating the
Processing output data
3
Physical Output wait for completion of
Processing transmitting output data

L

Figure 1. General structure of control task

First part is Physical Input Processing. At this part, task
will wait for completion of receiving input data. The
waiting time should be minimized because it is the main

buffering layer

func

data

TASK

5. command

func

cascaded
data buffer

source of loosing processing power. Second part is
Numerical Processing. At this part, task computes the
received data and commands the proper action. The last

_77 -

Third part 1s Physical Output Processing. At this part, task
transmits the command through the I/O device. For the
fastest response of interface with hardware task shall not
wait the completion of hardware commanding.

During all of these three process, waiting time should
be minimized to use the processor effectively. So, input
data should be prepared at the input buffer before task
needs the input data and output data should be processed
without any intervention of task.

Os

Figure 3. Task scheduling allocation

As shown in Figure 2, task will receive the needed data
from sensor through several application layer. In satellite
flight software, most of data line 1s MIL-STD-1553 or bi-
level bus.

With this muiltiple interfacing layer, sensor and task is
divided into independent operational unit. This
interfacing layer will manage the whole process to ensure
the predictability.

3. PREDICTABILITY ENHANCEMENTS

The enhancement of predictability during 1/O data
exchange between task and device could be achieved
through scheduling of task with regard to minimizing
hazard and avoiding data collision.

3.1 Scheduling

» Unnecessary dead time from data creation to
data processing

These potential hazards are mainly introduced by race
condition between tasks for acquiring CPU or shared
resources. So, the possibility of these hazards must be
excluded in the application. Consequently the optimal
scheduling is needed at the expense of reactivity of 1/0
data processing. But this approach is very good for

g

satellite application.

In satellite operation software, predictability has a
points rather than reactivity. So, this paper presents the
method which separate the data creating part from data
reading part completely to ensure the predictability.

Basically tasks which are related to data processing
consists in task which use data and task which read data.
So, these tasks can not be interpolated in time domain.
The scheduling of these tasks should be configured by
below manner.

The tasks in the Figure 3 are divided to fast periodic
and slow periodic execution rate. And the internal
operation requirement are listed below,

= fast execution rate task has higher priority
(1), (2) : it is not related to data acquisition, or
related to command data processing

satellite control software

sensor device O YO function

N T
digitai VO b e S uaxeﬂcmd“ﬁa{a — — ——— _If__ execute command :
| S e _init_get data je--__ | tart data it |
4 glectronics | end_get_data |- |7 start data acquisition
'\ MIL-STD-1553B | ,© .7 = efcidata RS |

% ; < ¢ . 7 " ! ‘x o y eas
4 data buf S / bi-level 1O i‘) oxe ajgoﬁthm ﬁ ™ I: end data vaUQSﬂan :
Sk L N |
Vs input _put_cmd_data st _. |
N P Sant lk‘f\;,o s | ™ save acquired data |
actuator device VO CNN S N N | |
data memory 1S Y run control SIW '
| ouput AN :
digital YO & \ buf N . |
}» . @generate command |

- ¢ |
N .| acgdata [| |
| |
e 1]
Figure 4. Task scheduling allocation , . L
- (3) : it starts the acquisition of data which is

In real time systems, race between tasks which own the
shared resource is the main cause of various problem. So,
the problematic hazard is below,

= Potential bad data integrity when shared
resource is pre-empted by another task

needed by task (6) ~ (8)

(4) : it waits the completion of acquisition of data
which is needed by task (6) ~ (8)

= slow execution rate task has lower priority

(5) : it saves the acquired data to the buffered
memory, or processes command data

78 -

- (6), (7), (8) : it 1s satellite control task. It fetches
the acquired data from the buffered memory,
performs control algorithm with this data, and
generates command data

efficiently on a system, data should be stored until Ny,
data is arrived. Therefore a concept which processes the
data as block unit level as described in Figure 6 1is
required and it will considerably contribute to raise the
performance of data acquisition logic.

Get Task

(G#2—{G#3)—

Set Task (S (S#2X(S#3)

nl
Command fO &2 1
Data Buffer

INT
Sensor #1

Sensor #2

Sensor #3

Figure 5. Task scheduling timing diagram

The tasks which handle data creation and management
is higher priority task. So it can pre-empt the lower
- priority task during the lower priority task processes data.
It should be ensured that the task which handles data
creation and management does not handle the same data
with the data which 1s handled by the pre-empted task.

Task (3), (4), and (5) should be performed by

sequential manner because the sequence must be
maintained.

3.2 Input data processing

Attitude control task of satellite flight software recetves
data from Sun sensor, Earth sensor, Gyro and etc devices.
[t 1s not important how the data reach to the software
through various way. Real thing is that data should be
sighted by the software as a local variable. It reflects the
need of some special task to manage the acquired data.
This special task should perform the buffering of these
acquired data before the software need the data. This task
needs specific function to interface and map the data to
consumer task. As shown in Figure 4, various function
will be needed to transport the sensored data from sensor
to task. The complex design of memory for data buffering
is crucial for each input/output data handling.

3.3 Qutput data processing

Attitude control task of satellite flight software
performs specific algorithms to control the satellite
attitude via wheel or thrusters after receiving the raw data

which 1s needed to attitude control from sensor equipment.

Finally the task creates command data and the data will
be sent via MIL-STD-1553B or bi-level command data
line.

If various data can be distributed to each customer,
these data should be buffered because it is not efficient to
perform the transaction every time data is arrived. If the
number of N is the value to perform the transaction

In Figure 5, an example is shown as detailed timing
diagram during block unit data acquisition.

Data can be read from the buffer(t,) by data process
task after receiving interrupt signal(t,) which notifies the
save finish of sensor data to data buffer form sensor #1.

So, “Get Task” can be invoked after or before At of
“Set Task”. “Get Task” is just waiting the signal which
notifies the event that sensor save the data to buffer
successfully (C.H.Koo, 2005).

Therefore, “Get Task” is independent with “Set Task”
with regard to time behavior and the focus of function.
Actually, “Get Task” can neglect the existence of “Set
Task” during the operation. The more the
interrelationship between “Get Task” and “Set Task” is
decreased, the more the operability and maintainability of
data acquisition become simple.

Through this concept, the ambiguity between the time
of data ready of sensors and the time of data acquisition 1s
removed. And time dependency between “Set Task” and
“Get Task” is lowered than the other mechanism.

Actually, to implement this concept, a specific interrupt
controller is needed to process the interrupt signals from
multi sensors. So, special controller 1s mandatory for nice
processing of multiple data acquisition and distribution

“and shall support main micro-controller because this kind

of activity can be significant burden in the general
purpose micro-controller even if it is present state of the
art processor.

4. CONCLUSION

Data predictability and integrity will be ensured by
scheduling which avoids the collision between data
acquisition task and data usage task. But, hardware I/O
channel design is more delicate and complex because n
previous I/O management will be ok by using periodic
/O operation, but now process after request is essential.
So internal scheduling for the next I/O operation in the
device is indispensable for the purpose of this approach to
ensure the predictability.

-79 -

In the real time systems and priority based systems,
various race conditions are possible and all these
conditions can not be removed dynamically. So, static and
deterministic task allocation is essential for ensuring the
predictability of data during I/O data exchange.

References from Journals:

C. H. Koo, 2005. Method of data processing through
polling and interrupt driven I/O on device data. KSAS,
Vol. 33, No. 9, 2005

A. Bums, A. J. Wellings, 1995, SOFTWARE-
PRACTICE AND EXPERIENCE, VOL. 25(7), 705-726

K. Tindell, A. Burns, and A. J. Wellings, 1995, Real-
Time Systems, Vol. 9, pp. 147-171

Lui Sha, Shirish S. Sathaye, 1995, Technical
Report(CMU/SEI-95-TR-011), SEI, p.p 15-19

Acknowledgements
This paper is part of COMS project supported by MOST.

- 80 -

