• Title/Summary/Keyword: Satellite sensor network

Search Result 44, Processing Time 0.021 seconds

Introduction to Establishment of the Korea Ocean Satellite Center : Basic Environment and Hardware (해양위성센터 구축 소개 : 기반환경 및 하드웨어 중심)

  • Yang, Chan-Su;Bae, Sang-Soo;Han, Hee-Jeong;Ahn, Yu-Hwan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.191-195
    • /
    • 2008
  • In Ansan (the headquarter of KORDI ; Korea Ocean Research & Development Institute), KOSC(Korea Ocean Satellite Center) is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI(Geostationary Ocean Color Imager) instrument which is loaded on COMS(Communication, Ocean and Meteorological Satellite); it will be launched in 2009. The basis equipment of KOSC(Electric power, Network, Security) has been constructed in 2007. KOSC is being constructed data processing and management system, GOCI L-band reception system, etc. The final object of KOSC is that maximize the application of GOCI.

  • PDF

Real-time measurement management system UI development linked the Water treatment facilities Broadband Convergence Network (수처리시설용 광대역 통합망 연계형 실시간 계측 관리 시스템 UI개발)

  • Yang, Seungyoun;Kim, Jintae;Oh, Hwanjin;Lee, Minwoo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.83-86
    • /
    • 2015
  • In this paper, we propose a real-tim measurement management system UI development linked the Water treatment facilities broadband Convergence Network. The sensor and the image data received by the server develop a program to interact with Web through water treatment facilities broadband convergence network. So, Separately develop UI capable of independently operating. Building a web server for remote monitoring of the transmission sensor and the image data. And Monitoring and control is possible the sensor data and image data through the Web-based UI. We can grasp the current state such as measurement time, concentration and depth of interface through the proposed real-time measurement management system UI development liked the water treatment facilities broadband convergence network. So, we can check in whether the normal operation of water treatment facilities and whether the casualties such as fire and security. As well as real time to see the information at a glance due to UI development can be raal-time monitoring of real-time measurement management system.

A Noise Re-radiation Calibration Technique in Interferometric Synthetic Aperture Radiometer for Sub-Y-type Array at Ka-Band

  • Seo Seungwon;Kim Sunghyun;Choi Junho;Park Hyuk;Lee Hojin;Kim Yonghoon;Kang Gumsil
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.577-580
    • /
    • 2004
  • To overcome with large size noise source distribution network design difficulty in interferometric radiometer system, especially for sub-Y-type array, a new on-board calibration technique using noise re-radiation is proposed in this paper. The suggested calibration technique is using noise re-radiation effect of center antenna after noise source injection from matched load. This approach is especially proper to sub-Y-type array interferometric synthetic aperture radiometer in mm-wave frequency band. Compared with noise injection network of a conventional synthetic aperture radiometer, the system mass, volume, and hardware complexity is reduced and cost-effective. Only one internal noise source, matched load, is used for injection using noise re-radiation technique a small set of sub-Y receiver channels is calibrated. Detailed calibration scenario is discussed and simulation results about noise re­radiation effect are presented.

  • PDF

A Performance Analysis of Video Smoke Detection based on Back-Propagation Neural Network (오류 역전파 신경망 기반의 연기 검출 성능 분석)

  • Im, Jae-Yoo;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.26-31
    • /
    • 2014
  • In this paper, we present performance analysis of video smoke detection based on BPN-Network that is using multi-smoke feature, and Neural Network. Conventional smoke detection method consist of simple or mixed functions using color, temporal, spatial characteristics. However, most of all, they don't consider the early fire conditions. In this paper, we analysis the smoke color and motion characteristics, and revised distinguish the candidate smoke region. Smoke diffusion, transparency and shape features are used for detection stage. Then it apply the BPN-Network (Back-Propagation Neural Network). The simulation results showed 91.31% accuracy and 2.62% of false detection rate.

Synergy of monitoring and security

  • Casciati, Sara;Chen, Zhi Cong;Faravelli, Lucia;Vece, Michele
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.743-751
    • /
    • 2016
  • An ongoing research project is devoted to the design and implementation of a satellite based asset tracking for supporting emergency management in crisis operations. Due to the emergency environment, one has to rely on a low power consumption wireless communication. Therefore, the communication hardware and software must be designed to match requirements, which can only be foreseen at the level of more or less likely scenarios. The latter aspect suggests a deep use of a simulator (instead of a real network of sensors) to cover extreme situations. The former power consumption remark suggests the use of a minimal computer (Raspberry Pi) as data collector.

Development of Precision Positioning and Fine Displacement Monitoring Based on GNSS (GNSS 기반의 정밀측위 및 미세변위 모니터링 개발)

  • Yeon, Sang-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.145-152
    • /
    • 2017
  • In this paper, GNSS(global navigation satellite system) to monitoring the fine for the construction of structure displacement based on satellite communications signals of GNSS. At the same time on USN(ubiquitous sensor network) and proposed a new approach to precise positioning by analyzing the results. A major construction structure for the safety diagnosis and prevent disaster from the risk of collapse. Precision measurement methods to mm level GNSS in that case and experiments in the application of new technologies that can most commonly used to replace the current through the permanent. The way a GNSS baseline and tested it on to prove. As a result, at our country at precise positioning and fine displacement monitoring application virtual reference station(VRS) in a GNSS mm of a margin of error of horizontal and vertical directions can be found.

Development of a Collapse-sensing Phone and Collapse Recognition Algorithm (낙상 감지 폰의 개발과 낙상판단 알고리즘)

  • Jang, Duk-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • To deal with the emergency of the solitary aged people, we have developed a collapse-sensing phone, in which a collapse sensor, a GPS receiving chipset and a CDMA sending chipset are included. The general cellular phone is somewhat expensive communication device using sound and characters, but the collapse-sensing phone is a cheaper and popular version. If the collapse sensor recognizes a certain of collapse of the aged people, CDMA sending chipset will send the location of the phone which is received from satellite by GPS receiving chipset. In this paper, a collapse recognition algorithm which is developed by using much experimental data, will be introduced to explain how to recognize the real collapse from fast sitting or immediate standing after collapse. Once a true collapse is ecognized, the phone-ID and the coordinate will be sent to the server of administrative office via CDMA network. And the position of emergency will be displayed on the GIS with the rescue center.

Development of Korea Ocean Satellite Center (KOSC): System Design on Reception, Processing and Distribution of Geostationary Ocean Color Imager (GOCI) Data (해양위성센터 구축: 통신해양기상위성 해색센서(GOCI) 자료의 수신, 처리, 배포 시스템 설계)

  • Yang, Chan-Su;Cho, Seong-Ick;Han, Hee-Jeong;Yoon, Sok;Kwak, Ki-Yong;Yhn, Yu-Whan
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.137-144
    • /
    • 2007
  • In KORDI (Korea Ocean Research and Development Institute), the KOSC (Korea Ocean Satellite Center) construction project is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI (Geostationary Ocean Color Imager) instrument which is loaded on COMS (Communication, Ocean and Meteorological Satellite); it will be launched in 2008. Ansan (the headquarter of KORDI) has been selected for the location of KOSC between 5 proposed sites, because it has the best condition to receive radio wave. The data acquisition system is classified into antenna and RF. Antenna is designed to be $\phi$ 9m cassegrain antenna which has 19.35 G/T$(dB/^{\circ}K)$ at 1.67GHz. RF module is divided into LNA (low noise amplifier) and down converter, those are designed to send only horizontal polarization to modem. The existing building is re-designed and arranged for the KOSC operation concept; computing room, board of electricity, data processing room, operation room. Hardware and network facilities have been designed to adapt for efficiency of each functions. The distribution system which is one of the most important systems will be constructed mainly on the internet. and it is also being considered constructing outer data distribution system as a web hosting service for offering received data to user less than an hour.

Current Status of Ocean Satellite Remote Sensing Data and Its Distribution (해양의 인공위성 자료 현황과 배포 소개)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.51-55
    • /
    • 2007
  • As for satellite programs, the multipurpose satellite 1(KOMPSAT-1) was successfully launched on Dec. 21, 1999 and operated for three years. It is still properly operated even though its life cycle was ended. The development of KOMPSAT-2 (Korea Multipurpose Satellite-2) is near completion and the development of KOMPSAT-3, KOMPSAT-5 and COMS (Communication, Ocean, Meterological Satellite) are proceeding swiftly. In KORDI(Korea Ocean Research and Development Institute), the KOSC (Korea Ocean Satellite Center) construction project is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI(Geostationary Ocean Color Imager) instrument which is loaded on COMS(Communication, Ocean and Meteorological Satellite); it will be launched in 2000. Ansan(the headquarter of KORDD has been selected for the location of KOSC between 5 proposed sites, because it has the best condition to receive radio wave. The data acquisition system is classified antenna and RF. Antenna is designed to be ${\emptyset}$ 9m cassegrain antenna which has 19.35 $G/T(dB/^{\circ}K)$ at 1.67GHz, RF module, is divided into LNA(Low noise amplifier) and down converter, those are designed to send only horizontal polarization to modem The existing building is re-designed and classified for the KOSC operation concept; computing room, board of electricity, data processing room, operation room Hardware and network facilities have been designed to adapt for efficiency of each functions. The distribution system which is one of the most important systems will be constructed mainly on the internet, and it is also being considered constructing outer data distribution system as a web hosting service for to offering received data to user under an hour.

  • PDF

A Scheme for Energy Detection Based Backscatter Signal Detection for Switching Antenna (안테나 스위칭을 위한 에너지 검파 기반의 백스캐터 신호 검출 기법)

  • Sim, Isaac;Hwang, Yu Min;Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.18-22
    • /
    • 2016
  • In this paper, we proposed a scheme for signal detection based on average of detected energy of frequencies for backscatter communications. We applied this scheme on the bistatic backscatter radio architecture for RF energy harvesting. Tags reflected entire RF signals on a same bandwidth when transmitted energy signals. Receivers can optimal switching antenna by this scheme. Simulation results show that the proposed scheme can precisely detect signals from tag with properly calculated parameters.