• Title/Summary/Keyword: Satellite image data

Search Result 1,198, Processing Time 0.024 seconds

Study on the Extraction of Ocean Wind, Wave and Current using SAR (SAR를 이용한 해풍, 파랑, 해류 추출 기법 연구)

  • Kang, Moon-Kyung;Park, Yong-Wook;Lee, Moon-Jin;Lee, Hoon-Yol
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.35-42
    • /
    • 2007
  • Recently satellite SAR techniques have become essential observation tools for various ocean phenomena such as wind, wave, and current. The CMOD4 and CMOD-IFR2 models are used to calculate the magnitude of wind at SAR resolution with no directional information. Combination of the wave-SAR spectrum analysis and the inter-look cross-spectra techniques provides amplitude and direction of the ocean wave over a square-km sized imagette, The Doppler shift measurement of SAR image yields surface speed of the ocean current along the radar looking direction, again at imagette resolution. In this paper we report the development of a SAR Ocean processor(SOP) incorporating all of these techniques. We have applied the SOP to several RADARSAT-1 images of the coast of Korean peninsula and compared the results with oceanographic data, which showed reliability of spaceborne SAR-based oceanographic research.

An Analysis of Environmental Policy Effect on Green Space Change using Logistic Regression Model : The Case of Ulsan Metropolitan City (로지스틱 회귀모형을 이용한 환경정책 효과 분석: 울산광역시 녹지변화 분석을 중심으로)

  • Lee, Sung-Joo;Ryu, Ji-Eun;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.4
    • /
    • pp.13-30
    • /
    • 2020
  • This study aims to analyze the qualitative and quantitative effects of environmental policies in terms of green space management using logistic regression model(LRM). Landsat satellite imageries in 1985, 1992, 2000, 2008, and 2015 are classified using a hybrid-classification method. Based on these classified maps, logistic regression model having a deforestation tendency of the past is built. Binary green space change map is used for the dependent variable and four explanatory variables are used: distance from green space, distance from settlements, elevation, and slope. The green space map of 2008 and 2015 is predicted using the constructed model. The conservation effect of Ulsan's environmental policies is quantified through the numerical comparison of green area between the predicted and real data. Time-series analysis of green space showed that restoration and destruction of green space are highly related to human activities rather than natural land transition. The effect of green space management policy was spatially-explicit and brought a significant increase in green space. Furthermore, as a result of quantitative analysis, Ulsan's environmental policy had effects of conserving and restoring 111.75㎢ and 175.45㎢ respectively for the periods of eight and fifteen years. Among four variables, slope was the most determinant factor that accounts for the destruction of green space in the city. This study presents logistic regression model as a way of evaluating the effect of environmental policies that have been practiced in the city. It has its significance in that it allows us a comprehensive understanding of the effect by considering every direct and indirect effect from other domains, such as air and water, on green space. We conclude discussing practicability of implementing environmental policy in terms of green space management with the focus on a non-statutory plan.

SPOT/VEGETATION-based Algorithm for the Discrimination of Cloud and Snow (SPOT/VEGETATION 영상을 이용한 눈과 구름의 분류 알고리즘)

  • Han Kyung-Soo;Kim Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.235-244
    • /
    • 2004
  • This study focuses on the assessment for proposed algorithm to discriminate cloudy pixels from snowy pixels through use of visible, near infrared, and short wave infrared channel data in VEGETATION-1 sensor embarked on SPOT-4 satellite. Traditional threshold algorithms for cloud and snow masks did not show very good accuracy. Instead of these independent masking procedures, K-Means clustering scheme is employed for cloud/snow discrimination in this study. The pixels used in clustering were selected through an integration of two threshold algorithms, which group ensemble the snow and cloud pixels. This may give a opportunity to simplify the clustering procedure and to improve the accuracy as compared with full image clustering. This paper also compared the results with threshold methods of snow cover and clouds, and assesses discrimination capability in VEGETATION channels. The quality of the cloud and snow mask even more improved when present algorithm is implemented. The discrimination errors were considerably reduced by 19.4% and 9.7% for cloud mask and snow mask as compared with traditional methods, respectively.

A Design of AMCS(Agricultural Machine Control System) for the Automatic Control of Smart Farms (스마트 팜의 자동 제어를 위한 AMCS(Agricultural Machine Control System) 설계)

  • Jeong, Yina;Lee, Byungkwan;Ahn, Heuihak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.201-210
    • /
    • 2019
  • This paper proposes the AMCS(Agricultural Machine Control System that distinguishes farms using satellite photos or drone photos of farms and controls the self-driving and operation of farm drones and tractors. The AMCS consists of the LSM(Local Server Module) which separates farm boundaries from sensor data and video image of drones and tractors, reads remote control commands from the main server, and then delivers remote control commands within the management area through the link with drones and tractor sprinklers and the PSM that sets a path for drones and tractors to move from the farm to the farm and to handle work at low cost and high efficiency inside the farm. As a result of AMCS performance analysis proposed in this paper, the PSM showed a performance improvement of about 100% over Dijkstra algorithm when setting the path from external starting point to the farm and a higher working efficiency about 13% than the existing path when setting the path inside the farm. Therefore, the PSM can control tractors and drones more efficiently than conventional methods.

Causes of the Difference of Inhabited Altitudes above Sea Level of Fairy Pitta(Pitta nympha) on Jeju Island Followed by Forest Landscape Through the Comparison of Landsat Images and the Literature Review (Landsat 영상비교와 문헌연구를 통한 제주도 산림경관변화와 팔색조 서식고도 차이에 관한 연구)

  • Kim, Eun-Mi;Kwon, Jin-O;Kang, Chang-Wan;Chun, Jung-Hwa
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.79-90
    • /
    • 2013
  • The altitude range of habitats in which Fairy Pitta inhabited in 1960s is different from the present in Jeju Island. We studied on the habitat environment to understand the causes of difference through the comparison of satellite image data(Landsat) between 1975 and 2002, the literature review in relation to habitats, vegetations, and forest landscapes. The area of below 600m asl.(above sea level) where is mainly Fairy Pitta inhabited at the present with a lot of forests, was massive pasture with small isolated forests nearby valley. The forests were broad-leaved evergreen forests, and second forests with poor condition in the size and forest structure. The forests around 700m asl. were also second forests with approximately 3m height trees. The forests from 800m to 1300m asl. were also disturbed by mushroom cultivation by local people. The authors believe that Fairy Pitta could not inhabited in the area above 1300m because of the poor forest conditions in the size and structure in which consist of Ilex crenata, Rhododendron mucronulatum var. ciliatum and coppice forests. Therefore it might be possible that the best forests for the Fairy Pitta habitat were located in the area of 1,000m to 1,300m above sea level in 1960s. Compared to present habitats, forests at 100m up to 800m above sea level, the authors believe that the size of habitats were smaller with less population of Fairy Pitta. Since 1960s the forest landscape of Jeju Island has been improved successfully, and because of that the population of Fairy Pitta also has been increased. To protect the Fairy Pitta and habitats in Jeju Island, it is suggested that sustainable forest management focusing on the species composition and stand structure maintain or enhance the biodiversity.

Mapping of Drought Index Using Satellite Imagery (위성영상을 활용한 가뭄지수 지도제작)

  • Chang, Eun-Mi;Park, Eun-Ju
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.3-12
    • /
    • 2004
  • It is necessary to manage water resources in rural areas in order to achieve proper development of new water resources, sustainable usage and reasonable distribution. This paper aims to analyze multi-temporal Landsat-7 ETM+data for soil moisture that is essential for crops in Ahnsung area. The ETM data was also fused with KOMPSAT-1 images in order to be used as backdrop watershed maps at first. Multi-temporal Images showed also the characteristics of soil moisture distribution. Images taken in April showed that rice paddy had as low reflectance as artificial features. Compared with April scenes, those taken in Hay and June showed wetness index increased in the rice paddies. The mountainous areas have almost constant moisture index, so the difference between the dates was very low while reservoirs and livers had dramatic changes. We can calculate total potential areas of distribution of moisture content within the basin and estimate the areas being sensitive to drought. Finally we can point out the sites of small rice paddies lack of water and visualize their distribution within the same basin. It can be said that multi-temporal Landsat-7 ETM+ and KOMPSAT data can be used to show broad drought with quick and simple analysis. Drought sensitiveness maps may enable the decision makers on rural water to evaluate the risk of drought and to measure mitigation, accompanied with proper data on the hydrological and climatic drought.

  • PDF

Estimating the Variations of Tidal Flat Areas after the Seawall Construction from Topographic Maps, Hydrographic Charts, and Satellite Images (지형도, 해도 및 위성영상을 이용한 방조제 축조 후의 간석지 면적 변화 추정)

  • Gang, Mun-Seong;Park, Seung-U;Kim, Sang-Min
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.597-604
    • /
    • 2001
  • The objective of the paper was to estimate the changes in acreages of tidal flats after the seawall construction at the Asan Bay and the Chunsu Bay from topographic maps, hydrographic charts, and Landsat TM images. The tidal floats from topographic maps published in one year differ significantly from that in the other, which appears to be attributed to the tide levels at the time of photographing. The hydrographic charts showed that tidal flats increase at rates of 22.3 ha/yr at the Asan Bay and 56.6 ha/yr at the Chunsu Bay after the dike construction. Applying the ISODATA method of unsupervised classifications for the Landsat TM images, the tidal flats were identified, and the resulting acreages for each image estimated. The resulting tidal flats increased at the rates of 21.3 ha/yr at the Asan Bay and 47.3 ha/yr at the Chunsu Bay during twelve years after the dike construction. It was found that the rates of the annual increases from the two data are very close and the differences result from the coastal lines at the charts and the TM images.

  • PDF

Analysis of Surface Temperature Characteristics by Land Surface Fabrics Using UAV TIR Images (UAV 열적외 영상을 활용한 피복재질별 표면온도 특성 분석)

  • SONG, Bong-Geun;KIM, Gyeong-Ah;SEO, Kyeong-Ho;LEE, Seung-Won;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.162-175
    • /
    • 2018
  • The purpose of this study was to analyze the surface temperature of surface fabrics using UAV TIR images, to mitigate problems in the thermal environment of urban areas. Surface temperature values derived from UAV images were compared with those measured in-situ during the similar period as when the images were taken. The difference in the in-situ measured and UAV image derived surface temperatures is the highest for gray colored concrete roof fabrics, at $17^{\circ}C$, and urethane fabrics show the lowest difference, at $0.3^{\circ}C$. The experiment power of the scatter plot of in-situ measured and UAV image derived surface temperatures was 63.75%, indicating that the correlation between the two is high. The surface fabrics with high temperature are metal roofs($48.9^{\circ}C$), urethane($43.4^{\circ}C$), and gray colored concrete roofs($42.9^{\circ}C$), and those with low temperature are barren land($30.2^{\circ}C$), area with trees and lawns($30.2^{\circ}C$), and white colored concrete roofs($34.9^{\circ}C$). These results show that accurate analysis of the thermal characteristics of surface fabrics is possible using UAV images. In future, it will be necessary to increase the usability of UAV images via comparison with in-situ data and linkage to satellite imagery.

Automatic Geometric Calibration of KOMPSAT-2 Stereo Pair Data (KOMPSAT-2 입체영상의 자동 기하 보정)

  • Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.191-202
    • /
    • 2012
  • A high resolution satellite imagery such as KOMPSAT-2 includes a material containing rational polynomial coefficient (RPC) for three-dimensional geopositioning. However, image geometries which are calculated from the RPC must have inevitable systematic errors. Thus, it is necessary to correct systematic errors of the RPC using several ground control points (GCPs). In this paper, we propose an efficient method for automatic correction of image geometries using tie points of a stereo pair and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) without GCPs. This method includes four steps: 1) tie points extraction, 2) determination of the ground coordinates of the tie points, 3) refinement of the ground coordinates using SRTM DEM, and 4) RPC adjustment model parameter estimation. We validates the performance of the proposed method using KOMPSAT-2 stereo pair. The root mean square errors (RMSE) achieved from check points (CPs) were about 3.55 m, 9.70 m and 3.58 m in X, Y;and Z directions. This means that we can automatically correct the systematic error of RPC using SRTM DEM.

Photochemical Reflectance Index (PRI) Mapping using Drone-based Hyperspectral Image for Evaluation of Crop Stress and its Application to Multispectral Imagery (작물 스트레스 평가를 위한 드론 초분광 영상 기반 광화학반사지수 산출 및 다중분광 영상에의 적용)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.637-647
    • /
    • 2019
  • The detection of crop stress is an important issue for the accurate assessment of yield decline. The photochemical reflectance index (PRI) was developed as a remotely sensed indicator of light use efficiency (LUE). The PRI has been tested in crop stress detection and a number of studies demonstrated the feasibility of using it. However, only few studies have focused on the use of PRI from remote sensing imagery. The monitoring of PRI using drone and satellite is made difficult by the low spectral resolution image captures. In order to estimate PRI from multispectral sensor, we propose a band fusion method using adjacent bands. The method is applied to the drone-based hyperspectral and multispectral imagery and estimated PRI explain 79% of the original PRI. And time series analyses showed that two PRI data (drone-based and SRS sensor) had very similar temporal variations. From these results, PRI from multispectral imagery using band fusion can be used as a new method for evaluation of crop stress.