Browse > Article
http://dx.doi.org/10.7780/kjrs.2012.28.2.191

Automatic Geometric Calibration of KOMPSAT-2 Stereo Pair Data  

Oh, Kwan-Young (Department of Geoinformatics, The University of Seoul)
Jung, Hyung-Sup (Department of Geoinformatics, The University of Seoul)
Publication Information
Korean Journal of Remote Sensing / v.28, no.2, 2012 , pp. 191-202 More about this Journal
Abstract
A high resolution satellite imagery such as KOMPSAT-2 includes a material containing rational polynomial coefficient (RPC) for three-dimensional geopositioning. However, image geometries which are calculated from the RPC must have inevitable systematic errors. Thus, it is necessary to correct systematic errors of the RPC using several ground control points (GCPs). In this paper, we propose an efficient method for automatic correction of image geometries using tie points of a stereo pair and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) without GCPs. This method includes four steps: 1) tie points extraction, 2) determination of the ground coordinates of the tie points, 3) refinement of the ground coordinates using SRTM DEM, and 4) RPC adjustment model parameter estimation. We validates the performance of the proposed method using KOMPSAT-2 stereo pair. The root mean square errors (RMSE) achieved from check points (CPs) were about 3.55 m, 9.70 m and 3.58 m in X, Y;and Z directions. This means that we can automatically correct the systematic error of RPC using SRTM DEM.
Keywords
3D geopositioning; KOMPSAT-2; SRTM DEM; RPC;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 강경호, 김창재, 손홍규, 이원희, 2010. 1:5000 수치지형도를 이용한 ASTER DEM과 SRTM DEM의 구축정확도 평가, 한국측량학회지, 28(1): 169-178.   과학기술학회마을
2 오관영, 정형섭, 이원진, 이동택, 2011. KOMPSAT-2 RPC를 이용한 3차원 위치결정 정확도 분석, 한국측량학회지, 29(1): 531-537.
3 한유경, 김덕진, 김용일, 2011. 선형정보를 이용한 고해상도 광학영상과 SAR 영상간 기하 보정, 원격탐사학회지, 27(2): 141-150.   DOI
4 Dare, P.M. and I.J., Dowman, 2000. Automatic registration of SAR and SPOT imagery based on multiple feature extraction and matching, Proc. of 2000 International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, Jul. 24-28, pp. 2896-2898.
5 D'Angelo, P., P. Schwind, T. Krauss, F. Barner, and P. Reinartz, 2009. Automated DSM based georeferencing of Cartosat-1 stereo scenes, Proc. of 2009 International Society for Photogrammetry and Remote Sensing, Hannover, Germany, Jun. 2-5, in CD.
6 Ebner, H., G. Strunz, and I. Colomina, 1991. Block triangulation with aerial and space imagery using DTM as control information, Proc. of 1991 American Congress on Surveying and Mapping/American Society for photogrammetry and Remote Sensing, Baltimore, Maryland, Mar. 25-29, pp. 76-85.
7 ERDAS, 2009. ERDAS Field Guide, ERDAS inc. Leica Geosystems.
8 Forstner, W. and E. Guch, 1987. A fast operator for detection and precise location of distinct points, corners and centers of circular features, Proc. of 1987 International Society for Photogrammetry and Remote Sensing, Interlaken, Switzerland, Jun. 2-4, pp. 281-305.
9 Gianinetto, M. and M. Scaioni, 2008. Automated geometric correction of high-resolution pushbroom satellite data, Photogrammetric Engineering & Remote Sensing, 74(1): 107-116.   DOI
10 Helava, U.V., 1988. Object space least square correlation, Proc. of 1988 International Archives of Photogrammetry and Remote Sensing, Kyoto, Japan, Jul. 1-10, vol. 27, pp. 297-302.
11 Heipke, C., H. Ebner, R. Schmidt, M. Spiegel, R. Brand, A. Baumgartnet, and G. Neukum, 2004. Camera orientation of Mars Express using DTM information, Lecture Notes in Computer Science, 3175(2004), pp. 544-552.
12 Huang, L. and Z. Li, 2010. Feature-based image registration using the shape context, International Journal of Remote Sensing, 31(8): 2169-2177.   DOI
13 Jung, H.S., S.H., Hong, and J.S., Won, 2008. Validation and selection of GCPs obtained from ERS SAR and the SRTM DEM: Applicaion to SPOT DEM Construction, Korean Journal of Remote Sensing, 24(5): 483-496.   DOI
14 Kim, T.J. and Y.J. Im, 2003. Automatic satellite image registration by combination of stereo matching and random sample consensus, Geoscience & Remote Sensing, 41(5): 1111-1117.   DOI   ScienceOn
15 Lu, Y. 1988. Interest operator and fast implementation, Proc. of 1988 International Archives of Photogrammetry and Remote Sensing, Kyoto, Japan, Jul. 1-10, vol. 27, pp. 491-500.
16 Lim, Y., M. Kim, T. Kim, and S. Cho. 2004. Automatic precision correction of satellite images using the gcp chips of lower resolution, Proc. of 2004 International Geoscience and Remote Sensing Symposium, Anchorage, Hawaii, Sep. 20-24, 2, pp. 1394-1397.
17 Passini, R.M. and K. Jacobsen, 2007. Accuracy analysis of SRTM height models, Proc. of 2007 American Society for photogrammetry and Remote Sensing, Tampa, Florida, May. 25-29, in CD.
18 Rodriguez, E., C.S. Morris, J.E. Belz, E.C. Chapin, J.M. Martin, W. Daffer, and S. Hensley, 2005. An assessment of the SRTM topographic products, Technical Report JPL D-31639, Jet Propulsion Laboratory.
19 Tao, C.V. and Y. Hu, 2000. Image rectification using a generic sensor model-rational function model, Proc. of 2000 International Archives of Photogrammetry and Remote Sensing, Amsterdam, Netherlands, vol. XXXIII, pp. 359-366.
20 Wang, Y., 1998. Principles and applications of structural image matching, ISPRS Journal of Photogrammetry and Remote Sensing, 25: 154-165.
21 Wang, Y., 1999. Automated triangulation of linear scanner imagery, Proc. of 1999 International Society for Photogrammetry and Remote Sensing, Hannover, Germany, Sep. 27-30, in CD.
22 Zou, X.L., H.B. MA, and C.H. Ge, 2003. Featurebased multi-resolution SAR and TM images auto-registration, Proc. of 2003 International Geoscience and Remote Sensing Symposium, Changsha, China, Oct. 8-13, 2, pp. 1278-1282.