DOI QR코드

DOI QR Code

Automatic Geometric Calibration of KOMPSAT-2 Stereo Pair Data

KOMPSAT-2 입체영상의 자동 기하 보정

  • 오관영 (서울시립대학교 공간정보공학과) ;
  • 정형섭 (서울시립대학교 공간정보공학과)
  • Received : 2012.03.01
  • Accepted : 2012.04.20
  • Published : 2012.04.30

Abstract

A high resolution satellite imagery such as KOMPSAT-2 includes a material containing rational polynomial coefficient (RPC) for three-dimensional geopositioning. However, image geometries which are calculated from the RPC must have inevitable systematic errors. Thus, it is necessary to correct systematic errors of the RPC using several ground control points (GCPs). In this paper, we propose an efficient method for automatic correction of image geometries using tie points of a stereo pair and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) without GCPs. This method includes four steps: 1) tie points extraction, 2) determination of the ground coordinates of the tie points, 3) refinement of the ground coordinates using SRTM DEM, and 4) RPC adjustment model parameter estimation. We validates the performance of the proposed method using KOMPSAT-2 stereo pair. The root mean square errors (RMSE) achieved from check points (CPs) were about 3.55 m, 9.70 m and 3.58 m in X, Y;and Z directions. This means that we can automatically correct the systematic error of RPC using SRTM DEM.

KOMPSAT-2와 같은 고해상 위성영상은 대상영역의 3차원 위치결정을 위하여 RPC(Rational Polynomial Coefficient)가 포함된 자료를 제공한다. 그러나 RPC로 계산된 영상기하는 일정량의 편이(systematic errors)를 지니고 있는 상태이며, 이를 보정하기 위해서는 수 개 이상의 지상기준점(ground control point)이 필요하다. 이에 본 논문에서는 지상기준점 없이 입체영상(stereo pair)과 SRTM(Shuttle Radar Topography Mission) DEM(Digital Elevation Model) 사이의 대응점(tie point)만을 이용하여 자동으로 영상 기하를 보정하는 효과적인 방법을 제안하였다. 이러한 방법은 4가지 단계를 포함 한다: 1) 대응점 추출, 2) 대응점에 대한 지상좌표 결정, 3) SRTM DEM을 이용한 지상좌표의 보정, 4) RPC 보정 모델의 파라미터 결정. 우리는 KOMPSAT-2 입체영상을 이용하여 제안된 방법의 성과를 입증하였다. 검사점(check point)을 통해 계산된 RMSE(Root Mean Square Error)는 X와 Y, Z방향으로 각각 약 3.55 m, 9.70 m, 3.58 m를 나타냈다. 이는 SRTM DEM을 이용하여 RPC가 지닌 편이를 X, Y 및 Z 모든방향에 대하여 10 m이내의 정확도로 자동보정할 수 있다는 것을 의미한다.

Keywords

References

  1. 강경호, 김창재, 손홍규, 이원희, 2010. 1:5000 수치지형도를 이용한 ASTER DEM과 SRTM DEM의 구축정확도 평가, 한국측량학회지, 28(1): 169-178.
  2. 오관영, 정형섭, 이원진, 이동택, 2011. KOMPSAT-2 RPC를 이용한 3차원 위치결정 정확도 분석, 한국측량학회지, 29(1): 531-537.
  3. 한유경, 김덕진, 김용일, 2011. 선형정보를 이용한 고해상도 광학영상과 SAR 영상간 기하 보정, 원격탐사학회지, 27(2): 141-150. https://doi.org/10.7780/kjrs.2011.27.2.141
  4. Dare, P.M. and I.J., Dowman, 2000. Automatic registration of SAR and SPOT imagery based on multiple feature extraction and matching, Proc. of 2000 International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, Jul. 24-28, pp. 2896-2898.
  5. D'Angelo, P., P. Schwind, T. Krauss, F. Barner, and P. Reinartz, 2009. Automated DSM based georeferencing of Cartosat-1 stereo scenes, Proc. of 2009 International Society for Photogrammetry and Remote Sensing, Hannover, Germany, Jun. 2-5, in CD.
  6. Ebner, H., G. Strunz, and I. Colomina, 1991. Block triangulation with aerial and space imagery using DTM as control information, Proc. of 1991 American Congress on Surveying and Mapping/American Society for photogrammetry and Remote Sensing, Baltimore, Maryland, Mar. 25-29, pp. 76-85.
  7. ERDAS, 2009. ERDAS Field Guide, ERDAS inc. Leica Geosystems.
  8. Forstner, W. and E. Guch, 1987. A fast operator for detection and precise location of distinct points, corners and centers of circular features, Proc. of 1987 International Society for Photogrammetry and Remote Sensing, Interlaken, Switzerland, Jun. 2-4, pp. 281-305.
  9. Gianinetto, M. and M. Scaioni, 2008. Automated geometric correction of high-resolution pushbroom satellite data, Photogrammetric Engineering & Remote Sensing, 74(1): 107-116. https://doi.org/10.14358/PERS.74.1.107
  10. Helava, U.V., 1988. Object space least square correlation, Proc. of 1988 International Archives of Photogrammetry and Remote Sensing, Kyoto, Japan, Jul. 1-10, vol. 27, pp. 297-302.
  11. Heipke, C., H. Ebner, R. Schmidt, M. Spiegel, R. Brand, A. Baumgartnet, and G. Neukum, 2004. Camera orientation of Mars Express using DTM information, Lecture Notes in Computer Science, 3175(2004), pp. 544-552.
  12. Huang, L. and Z. Li, 2010. Feature-based image registration using the shape context, International Journal of Remote Sensing, 31(8): 2169-2177. https://doi.org/10.1080/01431161003621585
  13. Jung, H.S., S.H., Hong, and J.S., Won, 2008. Validation and selection of GCPs obtained from ERS SAR and the SRTM DEM: Applicaion to SPOT DEM Construction, Korean Journal of Remote Sensing, 24(5): 483-496. https://doi.org/10.7780/kjrs.2008.24.5.483
  14. Kim, T.J. and Y.J. Im, 2003. Automatic satellite image registration by combination of stereo matching and random sample consensus, Geoscience & Remote Sensing, 41(5): 1111-1117. https://doi.org/10.1109/TGRS.2003.811994
  15. Lu, Y. 1988. Interest operator and fast implementation, Proc. of 1988 International Archives of Photogrammetry and Remote Sensing, Kyoto, Japan, Jul. 1-10, vol. 27, pp. 491-500.
  16. Lim, Y., M. Kim, T. Kim, and S. Cho. 2004. Automatic precision correction of satellite images using the gcp chips of lower resolution, Proc. of 2004 International Geoscience and Remote Sensing Symposium, Anchorage, Hawaii, Sep. 20-24, 2, pp. 1394-1397.
  17. Passini, R.M. and K. Jacobsen, 2007. Accuracy analysis of SRTM height models, Proc. of 2007 American Society for photogrammetry and Remote Sensing, Tampa, Florida, May. 25-29, in CD.
  18. Rodriguez, E., C.S. Morris, J.E. Belz, E.C. Chapin, J.M. Martin, W. Daffer, and S. Hensley, 2005. An assessment of the SRTM topographic products, Technical Report JPL D-31639, Jet Propulsion Laboratory.
  19. Tao, C.V. and Y. Hu, 2000. Image rectification using a generic sensor model-rational function model, Proc. of 2000 International Archives of Photogrammetry and Remote Sensing, Amsterdam, Netherlands, vol. XXXIII, pp. 359-366.
  20. Wang, Y., 1998. Principles and applications of structural image matching, ISPRS Journal of Photogrammetry and Remote Sensing, 25: 154-165.
  21. Wang, Y., 1999. Automated triangulation of linear scanner imagery, Proc. of 1999 International Society for Photogrammetry and Remote Sensing, Hannover, Germany, Sep. 27-30, in CD.
  22. Zou, X.L., H.B. MA, and C.H. Ge, 2003. Featurebased multi-resolution SAR and TM images auto-registration, Proc. of 2003 International Geoscience and Remote Sensing Symposium, Changsha, China, Oct. 8-13, 2, pp. 1278-1282.

Cited by

  1. Accuracy Investigation of DEM generated from Heterogeneous Stereo Satellite Images using Rational Polynomial Coefficients vol.22, pp.3, 2014, https://doi.org/10.7319/kogsis.2014.22.3.121
  2. 아리랑위성 2호 한반도 정사모자이크영상 제작 vol.16, pp.3, 2013, https://doi.org/10.11108/kagis.2013.16.3.103
  3. KOMPSAT-3 위성영상의 RPC 보정을 위한 국가 통합기준점 탐지 vol.30, pp.6, 2014, https://doi.org/10.7780/kjrs.2014.30.6.13
  4. PLEIADES 영상과 TerraSAR 기준점을 활용한 비접근지역의 1/5,000 수치지형도 제작을 위한 기하보정의 허용오차 만족 가능성 평가 vol.33, pp.2, 2012, https://doi.org/10.7848/ksgpc.2015.33.2.83
  5. ICP DEM 매칭방법의 정확도 개선 vol.33, pp.5, 2012, https://doi.org/10.7848/ksgpc.2015.33.5.443
  6. Accuracy Improvement of KOMPSAT-3 DEM Using Previous DEMs without Ground Control Points vol.35, pp.4, 2012, https://doi.org/10.7848/ksgpc.2017.35.4.241
  7. KOMPSAT-5 레이더 위성 스테레오 영상을 이용한 1:25,000 수치지형도제작 가능성 연구 vol.34, pp.6, 2012, https://doi.org/10.7780/kjrs.2018.34.6.3.3
  8. Quality Assessment of Four DEMs Generated Using In-Track KOMPSAT-3 Stereo Images vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/2649809
  9. 심층신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.3.5
  10. 아리랑 영상의 효율적 정사보정처리 연구 vol.37, pp.6, 2012, https://doi.org/10.7780/kjrs.2021.37.6.3.8