• 제목/요약/키워드: Satellite electrical power supply system

검색결과 19건 처리시간 0.023초

The Design and Construction of a High Efficiency Satellite Electrical Power Supply System

  • Mousavi, Navid
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.666-674
    • /
    • 2016
  • In this paper, a high efficiency satellite electrical power supply system is proposed. The increased efficiency of the power supply system allows for downscaling of the solar array and battery weight, which are among the most important satellite design considerations. The satellite power supply system comprises two units, namely a generation unit and a storage unit. To increase the efficiency of the solar array, a maximum power point tracker (MPPT) is used in the power generation unit. In order to improve the MPPT performance, a novel algorithm is proposed on the basis of the hill climbing method. This method can track the main peak of the array power curve in satellites with long duration missions under unpredicted circumstances such as a part of the array being damaged or the presence of a shadow. A lithium-ion battery is utilized in the storage unit. An algorithm for calculating the optimal rate of battery charging is proposed where the battery is charged with the maximum possible efficiency considering the situation of the satellite. The proposed system is designed and manufactured. In addition, it is compared to the conventional power supply systems in similar satellites. Results show a 12% increase in the overall efficiency of the power supply system when compared to the conventional method.

큐브위성용 상용 전력계 부품을 적용한 영구자석 자세제어 안정화 방식 큐브위성의 전력계 개념설계 (Conceptual Design of Electrical Power Subsystem for Cube Satellite with Permanent Magnet Attitude Stabilization Method)

  • 박태용;채봉건;정현모;오현웅
    • 항공우주시스템공학회지
    • /
    • 제8권1호
    • /
    • pp.42-47
    • /
    • 2014
  • The role of Electrical Power Subsystem (EPS) is to generate a power and distribute it to the electrical devices for the system operation. For on-orbit operation of cube satellite, it is also necessary to supply power to on-board mission devices as commercial satellite does. Recently, commercial EPS products dedicated for the cube satellite application has been developed and widely used for the power subsystem design. In this paper, a permanent magnet attitude stabilization method without external power has been introduced because it has advantage from power consumption point of view and the EPS design of cube satellite by applying the commercial EPS products has been introduced and investigated. This paper also deals with the specification of the commercial EPS products for the beginner of the cube satellite design.

Design Considerations of a Lithium Ion Battery Management System (BMS) for the STSAT-3 Satellite

  • Park, Kyung-Hwa;Kim, Chol-Ho;Cho, Hee-Keun;Seo, Joung-Ki
    • Journal of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.210-217
    • /
    • 2010
  • This paper introduces a lithium ion battery management system (BMS) for the STSAT-3 satellite. The specifications of a lithium ion battery unit are proposed to supply power to the satellite and the overall electrical and mechanical designs for a lithium ion battery management system are presented. The structural simulation results will be shown to confirm the behavior of both the BMS and the cells.

저궤도 위성 자세제어용 자이로 고전압 발생기 설계 (The Gyro High Voltage Power Supply Design for Attitude Control in the Satellite)

  • 김의찬;이흥호
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.403-408
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch. The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply (HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

Performance Improvement of the Linear BLDC Generator in a NASA Deep Space Explorer

  • Lee, Hyung-Woo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권3호
    • /
    • pp.108-113
    • /
    • 2004
  • This paper presents methods to improve performance of the power supply system in a NASA deep space explorer. In the Stirling engine driven reciprocating Brushless DC (BLDC) generator, the accurate position information of the prime mover is important to diagnose the performance of the engine and prevent distortion of the output power. Since sensors to detect the position are fragile and unreliable, and conventional sensorless techniques have drawbacks in the low speed region, a novel sensorless position detection technique for the prime mover has been proposed and verified. Another major issue of the generator for the spacecraft is power density maximization. The mass of the power system is important to the mass of the satellite. Therefore, the components of the spacecraft should be lightweight. Conventional rectification methods cannot achieve the maximum power possible due to non-optimal current waveforms. The optimal current waveform for maximizing power density and minimizing machine size and weight in a nonsinusoidal power supply system has been derived, incorporated in a control system, and verified by simulation work.

The Failure Analysis of Paralleled Solar Array Regulator for Satellite Power System in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권2호
    • /
    • pp.133-141
    • /
    • 2011
  • A satellite power system should generate and supply sufficient electric power to perform the satellite mission successfully during the satellite mission period, and it should be developed to be strong to the failure caused by the severe space environment. A satellite power system must have a high reliability with respect to failure. Since it cannot be repaired after launching, different from a ground system, the failures that may happen in space as well as the effect of the failures on the system should be considered in advance. However, it is difficult to use all the hardware to test the performance of the satellite power system to be developed in order to consider the failure mechanism of the electrical power system. Therefore, it is necessary to develop an accurate model for the main components of a power system and, based on that, to develop an accurate model for the entire power system. Through the power system modeling, the overall effect of failure on the main components of the power system can be considered and the protective design can be devised against the failure. In this study, to analyze the failure mode of the power system and the effects of the failure on the power system, we carried out modeling of the main power system components including the solar array regulator, and constituted the entire power system based on the modeling. Additionally, we investigated the effects of representative failures in the solar array regulator on the power system using the power system model.

다목적실용위성 2호기의 전력용량 예비설계

  • 장성수;이상곤;장진백;박성우;심은섭
    • 항공우주기술
    • /
    • 제1권2호
    • /
    • pp.57-65
    • /
    • 2002
  • 위성의 전력시스템은 임무기간 동안, 성공적인 임무수행을 위하여 위성의 탑재체와 위성버스에 충분한 전력을 공급하여야 한다. 전력시스템의 설계는 위성이 임무를 수행할 우주환경, 임무기간, 임무특성, 그리고 할당된 예산 등에 따라 설계의 방향이 결정된다. 즉, 1차 전력원으로 사용할 태양전지의 선정, 2차 전력원인 배터리의 선정, 그리고 각 전장품의 사양이 임무특성과 예산에 따라 결정된다. 위성의 전력시스템 설계는 다른 시스템의 설계에 큰 영향을 미칠 수 있다. 보다 많은 전력을 공급하기 위하여, 일차 및 이차 전력원을 크게 설계하는 것은 바람직하지 못하다. 위성의 필요한 전력보다 크게 설계된 전력시스템은 1차 및 2차 전력원의 잉여전력에 따른 열 발생문제, 임무수행에 따른 자세제어 문제, 각 전장품의 전력 용량 문제, 그리고 발사체의 선정 및 발사비용 등의 문제를 일으킨다. 특히, 저궤도의 경우에는 orbit drag 현상에 따른 위성의 궤도 유지보수를 위하여 추진제의 용량설계에 큰 영향을 줄 수 있다. 따라서, 전력시스템의 최적설계와 효율적인 운용을 위한 여러 기술이 개발되고 있다.

  • PDF

소형 저궤도 위성적용을 위한 전력조절분배기 예비설계 (Preliminary Design of a Power Control and Distribution Unit for a Small LEO Satellite Application)

  • 박성우;박희성;장진백;장성수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1438-1440
    • /
    • 2005
  • A power control and distribution unit(PCDU) plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. In this work, we perform the preliminary design of a PCDU scheme for the small LEO Satellite applications. The main constitutes of the PCDU are the battery interface module, the auxiliary supply modules, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, internal converter modules for regulated bus voltage generation. and instrument power distribution modules.

  • PDF

차세대 저궤도 소형위성 적용을 위한 전력시스템 설계 (Power System Design for Next Generation LEO Satellite Application)

  • 박성우;박희성;장진백;장성수
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF

전력산업용 위성통신망 구축 (The Construction of the Satellite communication network for Power Industry)

  • 김수배;오규환;정광균;이범석;현덕화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.497-499
    • /
    • 2006
  • There are several types of communication method which is used for the supply of electric power stably. But the communication methods used in KEPCO have weak points in the viewpoint of economy, technology and management. The Satellite communication systems have competitive power in price and technology for national wide utility owing to its wide area coverage and stability. This paper presents various adapted examples of the Power industry using he satellite communication systems.

  • PDF