• Title/Summary/Keyword: Satellite Navigation System

Search Result 855, Processing Time 0.03 seconds

Comparison of Predicted and Measured ASF (ASF 예측치와 실측치 비교)

  • Shin, Mi-Young;Hwang, Sang-Wook;Yu, Dong-Hui;Park, Chan-Sik;Lee, Chang-Bok;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.175-180
    • /
    • 2010
  • In the almost application parts, GNSS being used the primary navigation system on world-widely. However, some of nations attempt or deliberate to enhance current Loran system, as a backup to satellite navigation system because of the vulnerability to the disturbance signal. Loran interests in supplemental navigation system by the development and enhancement, which is called eLoran, and that consists of advancement of receiver and transmitter and of differential Loran in order to increase the accuracy of current Loran-C. A significant factor limiting the ranging accuracy of the eLoran signal is the ASF in the TOAs observed by the receiver. The ASF is mostly due to the fact that the ground-wave signal is likely to propagate over paths of varying conductivity and topography. This paper presents comparison results between the predicted ASF and the measured ASF in a southern east region of Korea. For predicting ASF, the Monteath model is used. Actual ASF is measured from the legacy Loran signal transmitted Pohang station in the GRI 9930 chain. The test results showed the repeatability of the measured ASF and the consistent characteristics between the predicted and the measured ASF values.

Analysis of Propagation Environment for Selecting R-Mode Reference and Integrity Station (R-Mode 보정국과 감시국 선정을 위한 전파환경 분석에 관한 연구)

  • Jeon, Joong-Sung;Jeong, Hae-Sang;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.45 no.1
    • /
    • pp.26-32
    • /
    • 2021
  • In ocean field, the spread of the Fourth Industrial Revolution based on information and communication technology requires high precision and stable PNT&D (Position, Navigation, Timing and Data). As the IMO (International Maritime Organization) and IALA (The International Association of Marine Aids to Navigation and Lighthouse Authorities) are requiring backup systems due to mitigate vulnerabilities and the increase of dependency on GNSS (Global Navigation Satellite System), Korea is conducting a research & development of R-Mode. An DGPS (Differentiate Global Positioning System) reference station that uses MF, an existing maritime infrastructure, and AIS (Automatic Identification System) base stations that use 34 integrity station and VHF will be utilized in this study to avoid redundant investment. Because there are radio shadow areas that display low signal levels in the west sea, the establishment of new R-Mode reference and integrity station will be intended to resolve problems regrading the radio shadow area. Because the frequency has a characteristic in that radio wave transmits well along the ground (water surface) in low frequency band, simulation and measurement were conducted therefore this paper to propose candidate sites for R-Mode reference and integrity station resulted through p wave's propagation characteristics analysis. Using this paper, R-Mode reference and integrity station can be established at appropriate locations to resolve radio shadow areas in other regions.

Telemetry System Encryption Technique using ARIA Encryption Algorithm (ARIA 암호 알고리즘을 이용한 원격측정 시스템 암호화 기법)

  • Choi, Seok-Hun;Lee, Nam-Sik;Kim, Bok-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.134-141
    • /
    • 2020
  • Telemetry system is a communication system that measures and transmits various signals in the aircraft to the ground for collecting and monitoring flight data during the development of unmanned air vehicle and satellite launch vehicles. With the recent development of wireless communication technology, it is becoming important to apply encryption of telemetry system to prepare with security threats that may occur during flight data transmission. In this paper, we suggested and implemented the application method of ARIA-256, Korean standard encryption algorithm, to apply encryption to telemetry system. In consideration of the block error propagation and the telemetry frame characteristics, frame is encrypted using the CTR mode and can apply the Reed-solomon codes recommended by CCSDS. ARIA algorithm and cipher frame are implemented in FPGA, and simulation and hardware verification system confirmed continuous frames encryption.

A Study on Automatic Correction Method of Electronic Compass Deviation Using the Geostationary Satellite Azimuth Information (정지위성 방위각 정보를 활용한 전자 컴퍼스 편차 자동보정기법 연구)

  • Lee, Jae-Won;Lee, Geon-Ho
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • The Moving Search Radar System (MSRS) monitors sea areas by moving along the coast. Since the radar is initially aligned to the front of the vehicle, it is important to know the changes in the heading azimuth of the vehicle to quickly acquire the target azimuth from the radar after the MSRS has moved. The heading azimuth can be obtained using the gyro compass, the GPS compass or the electronic compass. The electronic compass is suitable for MSRS requiring fast maneuverability due to its small volume, short stabilization time and low price. However, using a geomagnetic sensor may result in an error due to the surrounding magnetic field. Errors can make early automatic tracking of the satellites difficult and can reduce the radar detection accuracy. Therefore, this paper proposes a method to automatically compensate for the error reflecting the correction value on the radar obtained by comparing the reference azimuth calculated by solving the geodesic inverse problem using two coordinates between the radar and the geostationary satellite with the actually-directed azimuth angle of the satellite antenna. The feasibility and convenience of the proposed method were verified by applying it to the MSRS in the field.

Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope (위험 경사면의 변위 검출을 위한 지상 라이다의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.323-328
    • /
    • 2019
  • In order to construct 3D geospatial information about the terrain, current measurement using a total station, remote sensing, GNSS(Global Navigation Satellite System) have been used. However, ground survey and GNSS survey have time and economic disadvantages because they have to be surveyed directly in the field. In case of using aerial photographs and satellite images, these methods have the disadvantage that it is difficult to obtain the three-dimensional shape of the terrain. The terrestrial LiDAR can acquire 3D information of X, Y, Z coordinate and shape obtained by scanning innumerable laser pulses at densely spaced intervals on the surface of the object to be observed at high density, and the processing can also be automated. In this study, terrestrial LiDAR was used to analyze slope displacement. Study area slopes were selected and data were acquired using LiDAR in 2016 and 2017. Data processing has been used to generate slope cross section and slope data, and the overlay analysis of the generated data identifies slope displacements within 0.1 m and suggests the possibility of using slope LiDAR on land to manage slopes. If periodic data acquisition and analysis is performed in the future, the method using the terrestrial lidar will contribute to effective risk slope management.

Ionospheric and Upper Atmospheric Observations in Korea (국내 우주환경 자료 보유 현황: 전리권/고층대기)

  • Lee, Changsup;Lee, Woo Kyoung;Division of Solar and Space Environment of KSSS,
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.199-216
    • /
    • 2021
  • In 2020, the solar and space environment division at the Korea Space Science Society surveyed the status of data archives in solar physics, magnetosphere, and ionosphere/upper atmosphere in Korea to promote broader utilization of the data and research collaboration. The survey includes ground- and satellite-based instruments and developing models by research institutes and universities in Korea. Based on the survey results, this study reports the status of the ground-based instruments, data products in the ionosphere and upper atmosphere, and documentation of them. The ground-based instruments operated by the Korea Polar Research Institute and Korea Astronomy and Space Science Institute include ionosonde, Fabry-Perot interferometer in Arctic Dasan stations, Antarctic King Sejong/Jang Bogo stations, and an all-sky camera, VHF radar in Korea. We also provide information on total electron content and scintillation observations derived from the Global Navigation Satellite System (GNSS) station networks in Korea. All data are available via the webpage, FTP, or by request. Information on ionospheric data and models is available at http://ksss.or.kr. We hope that this report will increase data accessibility and encourage the research community to engage in the establishment of a new Space Science Data Ecosystem, which supports archiving, searching, analyzing, and sharing the data with diverse communities, including educators, industries, and the public as wells as the research scientist.

Some Items to be Resolved for Going through the Arctic Route (북극항로를 운항하기 위한 선결과제)

  • Nam, Chung-Do;Kim, Jung-Man
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.137-138
    • /
    • 2010
  • It is prospected that commercialization of the Arctic route come to faster than an anticipation due to acceleration of the melting of Arctic ice as a result of global warmness and etc. Since 1979 from the start of the satellite observation, the ice areas of the Arctic ocean came to decrease about 40 % in summer season For the commercial use of the Arctic route, it must be settled some problems including the navigation for the vessels in the EEZ of the related nations before considering about economic basis. It is also needed to build special ships which satisfy to the condition of the Arctic climate for the technical factors of ship handling and should be carried out completion of the special educational program to be approved for the seamen through the cooperation with the coastal nations. The information system for the Arctic route should be developed.

  • PDF

A Study on Integrity Monitoring Improvement of the DGPS Reference Station (DGPS 기준국 무결성 감시 체계 고도화 방안 연구)

  • Cho, Deuk-Jae;Park, Sang-Hyun;Choi, Jin-Kyu;Suh, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.509-514
    • /
    • 2007
  • The importance of the GPS is becoming larger and larger since it is one of the Global Navigation Satellite Systems and is regarded as a national infrastructure in the field positioning and timing Nowadays many researches avoiding and/or minimizing economic loss caused by unexpected fault of the GPS are being carried out because GPS fault can give a large impact on social security system as well as economic system NDGPS network which has been authorized by the Ministry of Marine and Fisheries provides services for marine users and evolved into a national infrastructure for GNSS users. Many researchers and engineers are doing research work in order to apply the NDGPS network to other fields. From this trend, it can be expected that the integrity and related functions for the NDGPS users will become more important than before. This paper analyzes integrity informations about the real GNSS fault and proposes method on integrity monitoring improvement of the DGPS reference station.

3D LIDAR Based Vehicle Localization Using Synthetic Reflectivity Map for Road and Wall in Tunnel

  • Im, Jun-Hyuck;Im, Sung-Hyuck;Song, Jong-Hwa;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.159-166
    • /
    • 2017
  • The position of autonomous driving vehicle is basically acquired through the global positioning system (GPS). However, GPS signals cannot be received in tunnels. Due to this limitation, localization of autonomous driving vehicles can be made through sensors mounted on them. In particular, a 3D Light Detection and Ranging (LIDAR) system is used for longitudinal position error correction. Few feature points and structures that can be used for localization of vehicles are available in tunnels. Since lanes in the road are normally marked by solid line, it cannot be used to recognize a longitudinal position. In addition, only a small number of structures that are separated from the tunnel walls such as sign boards or jet fans are available. Thus, it is necessary to extract usable information from tunnels to recognize a longitudinal position. In this paper, fire hydrants and evacuation guide lights attached at both sides of tunnel walls were used to recognize a longitudinal position. These structures have highly distinctive reflectivity from the surrounding walls, which can be distinguished using LIDAR reflectivity data. Furthermore, reflectivity information of tunnel walls was fused with the road surface reflectivity map to generate a synthetic reflectivity map. When the synthetic reflectivity map was used, localization of vehicles was able through correlation matching with the local maps generated from the current LIDAR data. The experiments were conducted at an expressway including Maseong Tunnel (approximately 1.5 km long). The experiment results showed that the root mean square (RMS) position errors in lateral and longitudinal directions were 0.19 m and 0.35 m, respectively, exhibiting precise localization accuracy.

A Positioning Accuracy Analysis in Korea by using NTCM-BC Ionosphere Model (NTCM-BC 전리층 모델을 이용한 한반도 내 위치추정 정확도 분석)

  • Kim, Mingyu;Myung, Jaewook;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.479-484
    • /
    • 2017
  • A Neustrelitz TEC model (NTCM) developed by Deutsches Zentrum $f{\ddot{u}}r$ Luft- und Raumfahrt (DLR) provides a better accuracy than the global positioning system (GPS) Klobuchar model for predicting ionospheric delay. The NTCM model accuracy is comparable to Galileo NeQuick model, and it has less computation time. The NTCM model uses F10.7 values as a parameter of solar activity function, while a NTCM-Broadcast (NTCM-BC) uses TEC values from a Klobuchar model. For this reason, a NTCM-BC model can be used for real-time ionosphere correction. In this paper, vertical ionospheric delay and GPS positioning errors in Korea by using a NTCM-BC ionosphere model from 2009 to 2014 are analyzed and compared with those of a Klobuchar model. In the 6-year statistics, the vertical ionospheric delay is reduced by 17.7 %, and horizontal and vertical positioning accuracies by the NTCM-BC model are improved by 25.6 % and 6.7 %, respectively, over the Klobuchar model.