• 제목/요약/키워드: Satellite Control

검색결과 1,486건 처리시간 0.029초

항공과 위성에 이용하는 1553B 통신설계 및 Debugging에 관한 연구 (The Desing and Implementation for 1553B using Aircraft and Satellite)

  • 이현석;임기택;장종진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.1065-1066
    • /
    • 2008
  • We discuss about Design and Debugging for 1553B Communication. 1553B Communication is used in Aircraft and Satellite System. When we design a Satellite Control Computer, we apply a 1553B Communication among Satellite Control Computer and others. Satellite Control Computer has a PM32 Module, it is CPU and control module especially. In this paper, we show you a 1553B Communication Design and Debugging in the Satellite System.

  • PDF

위성 도킹 지상시험장치의 어드미턴스 제어 (Admittance Control for Satellite Docking Ground Testing System)

  • 우희진;최영진;원대희
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.71-78
    • /
    • 2024
  • The paper presents a hardware-in-the-loop (HIL) system designed for satellite movement testing in the microgravity environment on the ground with two industrial robots. Especially, the paper deals with the contact between satellites during rendezvous and docking simulations of satellites using a robotic HILS system. For this purpose, the admittance control method plays a core role in preventing damage to the satellite or robot from contact force between satellites. The coordinate frames are transformed into the mass center of the satellite and the admittance control at the level of exponential coordinates is adopted to actively use the properties of Lie groups related to tracking errors. These methods effectively mitigate the risk of robot damage during inter-satellite contact and ensure efficient tracking performance of satellite movements.

Development of the Test and Mnitor System for Satellite Communications Payload and Network

  • Kong, Nam-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.34-37
    • /
    • 1994
  • A satellite communications monitoring and control system(SCMCS) has been developed at ETRI to provide the capabilities of in-orbit test (IOT) for communications payload and communications system monitoring(CSM) for the satellite communications services. The paper discusses the system level design of SCMCS and its tasks.

  • PDF

직접대역확산 방식의 시분할 다중접속 위성통신 제어채널 고속 부호동기 방법 (Fast code synchronization method of the DS-SS/TDMA control channel for satellite communication)

  • 류영재
    • 한국위성정보통신학회논문지
    • /
    • 제4권1호
    • /
    • pp.14-20
    • /
    • 2009
  • 본 논문은 작전범위 내에 분포된 수백 대의 위성 단말의 상태를 제어, 감시하기 위한 DS-SS/TDMA 역방향 제어채널의 동기 구조 및 방법에 대하여 언급한다. 군용 위성은 전자전 기능 및 수백 대의 위성단말의 상태를 동시에 제어하기 위해 DS-SS/TDMA 방식의 제어채널이 필요하나 동기 시간이 긴 문제가 있다. 본 논문은 짧은 주기의 세부 Bin으로 구성된 프리앰블을 제어채널 데이터 앞부분에 삽입하고 각 세부 Bin을 병렬적으로 수신하는 정합 필터형태의 동기회로를 적용함으로서 심각한 재밍환경에서 수 ms이내에 대부분의 제어채널 패킷을 수신할 수 있는 제어채널 동기방법을 제안한다.

  • PDF

Time Optimal Attitude Maneuver Strategies for the Agile Spacecraft with Reaction Wheels and Thrusters

  • Lee Byung-Hoon;Lee Bong-Un;Oh Hwa-Suk;Lee Seon-Ho;Rhee Seung-Wu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1695-1705
    • /
    • 2005
  • Reaction wheels and thrusters are commonly used for the satellite attitude control. Since satellites frequently need fast maneuvers, the minimum time maneuvers have been extensively studied. When the speed of attitude maneuver is restricted due to the wheel torque capacity of low level, the combinational use of wheel and thruster is considered. In this paper, minimum time optimal control performances with reaction wheels and thrusters are studied. We first identify the features of the maneuvers of the satellite with reaction wheels only. It is shown that the time-optimal maneuver for the satellite with four reaction wheels in a pyramid configuration occurs on the fashion of single axis rotation. Pseudo control logic for reaction wheels is successfully adopted for smooth and chattering-free time-optimal maneuvers. Secondly, two different thrusting logics for satellite time-optimal attitude maneuver are compared with each other: constant time-sharing thrusting logic and varying time-sharing thrusting logic. The newly suggested varying time-sharing thrusting logic is found to reduce the maneuvering time dramatically. Finally, the hybrid control with reaction wheels and thrusters are considered. The simulation results show that the simultaneous actuation of reaction wheels and thrusters with varying time-sharing logic reduces the maneuvering time enormously. Spacecraft model is Korea Multi-Purpose Satellite (KOMPSAT)-2 which is being developed in Korea as an agile maneuvering satellite.

Analysis and Design of the Automatic Flight Dynamics Operations For Geostationary Satellite Mission

  • Lee, Byoung-Sun;Hwang, Yoo-La;Park, Sang-Wook;Lee, Young-Ran;Galilea, Javier Santiago Noguero
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권2호
    • /
    • pp.267-278
    • /
    • 2009
  • Automation of the key flight dynamics operations for the geostationary orbit satellite mission is analyzed and designed. The automation includes satellite orbit determination, orbit prediction, event prediction, and fuel accounting. An object-oriented analysis and design methodology is used for design of the automation system. Automation scenarios are investigated first and then the scenarios are allocated to use cases. Sequences of the use cases are diagramed. Then software components and graphical user interfaces are designed for automation. The automation will be applied to the Communication, Ocean, and Meteorology Satellite (COMS) flight dynamics system for daily routine operations.

Analysis of Inter-satellite Ranging Precision for Gravity Recovery in a Satellite Gravimetry Mission

  • Kim, Pureum;Park, Sang-Young;Kang, Dae-Eun;Lee, Youngro
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.243-252
    • /
    • 2018
  • In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential coefficients is analyzed. Simulated precise orbit determination (POD) data and inter-satellite range data of formation-flying satellites containing white noise were generated, and geopotential coefficients were recovered from these simulated data sets using the crude acceleration approach. The accuracy of the recovered coefficients was quantitatively compared between data sets encompassing different ranging precisions. From this analysis, a rough prediction of the accuracy of geopotential coefficients could be obtained from the hypothetical mission. For a given POD precision, a ranging measurement precision that matches the POD precision was determined. Since the purpose of adopting inter-satellite ranging in a gravimetry mission is to overcome the imprecision of determining orbits, ranging measurements should be more precise than POD. For that reason, it can be concluded that this critical ranging precision matching the POD precision can serve as the minimum precision requirement for an on-board ranging device. Although the result obtained herein is about a very particular case, this methodology can also be applied in cases where different parameters are used.

Estimation and Prediction-Based Connection Admission Control in Broadband Satellite Systems

  • Jang, Yeong-Min
    • ETRI Journal
    • /
    • 제22권4호
    • /
    • pp.40-50
    • /
    • 2000
  • We apply a "sliding-window" Maximum Likelihood(ML) estimator to estimate traffic parameters On-Off source and develop a method for estimating stochastic predicted individual cell arrival rates. Based on these results, we propose a simple Connection Admission Control(CAC)scheme for delay sensitive services in broadband onboard packet switching satellite systems. The algorithms are motivated by the limited onboard satellite buffer, the large propagation delay, and low computational capabilities inherent in satellite communication systems. We develop an algorithm using the predicted individual cell loss ratio instead of using steady state cell loss ratios. We demonstrate the CAC benefits of this approach over using steady state cell loss ratios as well as predicted total cell loss ratios. We also derive the predictive saturation probability and the predictive cell loss ratio and use them to control the total number of connections. Predictive congestion control mechanisms allow a satellite network to operate in the optimum region of low delay and high throughput. This is different from the traditional reactive congestion control mechanism that allows the network to recover from the congested state. Numerical and simulation results obtained suggest that the proposed predictive scheme is a promising approach for real time CAC.

  • PDF

Attitude Control System Design & Verification for CNUSAIL-1 with Solar/Drag Sail

  • Yoo, Yeona;Kim, Seungkeun;Suk, Jinyoung;Kim, Jongrae
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.579-592
    • /
    • 2016
  • CNUSAIL-1, to be launched into low-earth orbit, is a cubesat-class satellite equipped with a $2m{\times}2m$ solar sail. One of CNUSAIL's missions is to deploy its solar sail system, thereby deorbiting the satellite, at the end of the satellite's life. This paper presents the design results of the attitude control system for CNUSAIL-1, which maintains the normal vector of the sail by a 3-axis active attitude stabilization approach. The normal vector can be aligned in two orientations: i) along the anti-nadir direction, which minimizes the aerodynamic drag during the nadir-pointing mode, or ii) along the satellite velocity vector, which maximizes the drag during the deorbiting mode. The attitude control system also includes a B-dot controller for detumbling and an eigen-axis maneuver algorithm. The actuators for the attitude control are magnetic torquers and reaction wheels. The feasibility and performance of the design are verified in high-fidelity nonlinear simulations.