Browse > Article
http://dx.doi.org/10.5140/JASS.2018.35.4.243

Analysis of Inter-satellite Ranging Precision for Gravity Recovery in a Satellite Gravimetry Mission  

Kim, Pureum (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University)
Park, Sang-Young (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University)
Kang, Dae-Eun (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University)
Lee, Youngro (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University)
Publication Information
Journal of Astronomy and Space Sciences / v.35, no.4, 2018 , pp. 243-252 More about this Journal
Abstract
In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential coefficients is analyzed. Simulated precise orbit determination (POD) data and inter-satellite range data of formation-flying satellites containing white noise were generated, and geopotential coefficients were recovered from these simulated data sets using the crude acceleration approach. The accuracy of the recovered coefficients was quantitatively compared between data sets encompassing different ranging precisions. From this analysis, a rough prediction of the accuracy of geopotential coefficients could be obtained from the hypothetical mission. For a given POD precision, a ranging measurement precision that matches the POD precision was determined. Since the purpose of adopting inter-satellite ranging in a gravimetry mission is to overcome the imprecision of determining orbits, ranging measurements should be more precise than POD. For that reason, it can be concluded that this critical ranging precision matching the POD precision can serve as the minimum precision requirement for an on-board ranging device. Although the result obtained herein is about a very particular case, this methodology can also be applied in cases where different parameters are used.
Keywords
satellite gravimetry; gravity recovery; inter-satellite range; crude acceleration approach; GRACE mission;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Choi MS, Lim HC, Choi EJ, Park E, Yu SY, et al., Performance analysis of the first Korean satellite laser ranging system, J. Astron. Space Sci. 31, 225-233 (2014). https://doi.org/10.5140/JASS.2014.31.3.225   DOI
2 Eun Y, Park SY, Kim GN, Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity, Acta Astronaut. 147, 48-58 (2018). https://doi.org/10.1016/j.actaastro.2018.03.030   DOI
3 Flechtner F, Morton P, Watkins M, Webb F, Status of the GRACE follow-on mission, Proceedings of the International Association of Geodesy (IAU) Symposium GGHS2012, Venice, Italy, 9-12 Oct 2012.
4 Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, et al., Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission, J. Geodesy 85, 749-758 (2011). https://doi.org/10.1007/s00190-011-0498-3   DOI
5 Flury J, Bettadpur S, Tapley BD, Precise accelerometry onboard the GRACE gravity field satellite mission, Adv. Space Res. 42, 1414-1423 (2008). https://doi.org/10.1016/j.asr.2008.05.004   DOI
6 Hoffman TL, GRAIL: gravity mapping the Moon, in 2009 IEEE Aerospace Conference, Big Sky, MT, 7-14 Mar 2009.
7 Gunter B, Ries J, Bettadpur S, Tapley B, A simulation study of the errors of omission and commission for GRACE RL01 gravity fields, J. Geodesy 80, 341-351 (2006). https://doi.org/10.1007/s00190-006-0083-3   DOI
8 Han SC, Efficient determination of global gravity field from satellite-to-satellite tracking mission, Celest. Mech. Dyn. Astron. 88, 69-102 (2004). https://doi.org/10.1023/B:CELE.0000009383.07092.1f   DOI
9 Heiskanen WA, Moritz H, Physical Geodesy (W. H. Freeman and Company, San Francisco, 1967).
10 Jo JH, Park IK, Lim HC, Seo YK, Yim HS, et al., The design concept of the first mobile satellite ranging system (ARGO-M) in Korea, J. Astron. Space Sci. 28, 93-102 (2011). https://doi.org/10.5140/JASS.2011.28.1.093   DOI
11 Jung S, Park SY, Park HE, Park CD, Kim SW, et al., Real-time determination of relative position between satellites using laser ranging, J. Astron. Space Sci. 29, 351-362 (2012). https://doi.org/10.5140/JASS.2012.29.4.351   DOI
12 Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, et al., The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA Goddard Space Flight Center Technical Report, NASA/TP-1998-206861 (1998).
13 Kim Y, Park SY, Lee E, Kim M, A deep space orbit determination software: overview and event prediction capability, J. Astron. Space Sci. 34, 139-151 (2017). https://doi.org/10.5140/JASS.2017.34.2.139   DOI
14 Kim YR, Park ES, Kucharski D, Lim HC, Orbit determination using SLR data for STSAT-2C: short-arc analysis, J. Astron. Space Sci. 32, 189-200 (2015). https://doi.org/10.5140/JASS.2015.32.3.189   DOI
15 Lee E, Park SY, Shin B, Cho S, Choi EJ, et al., Orbit determination of KOMPSAT-1 and Cryosat-2 satellites using Optical Wide-field Patrol Network (OWL-Net) data with batch least squares filter, J. Astron. Space Sci. 34 , 19-30 (2017a). https://doi.org/10.5140/JASS.2017.34.1.19   DOI
16 Lee E, Kim Y, Kim M, Park SY, Development, demonstration and validation of the deep space orbit determination software using lunar prospector tracking data, J. Astron. Space Sci. 34, 213-223 (2017b). https://doi.org/10.5140/JASS.2017.34.3.213   DOI
17 Lee J, Park SY, Kang DE, Relative navigation with intermittent laser-based measurement for spacecraft formation flying, J. Astron. Space Sci. 35, 163-173 (2018). https://doi.org/10.5140/JASS.2018.35.3.163
18 Lim HC, Bang SC, Yu SY, Seo YK, Park ES, et al., Study on the optoelectronic design for Korean mobile satellite laser ranging system, J. Astron. Space Sci. 28, 155-162 (2011). https://doi.org/10.5140/JASS.2011.28.2.155   DOI
19 Oh H, Park HE, Lee K, Park SY, Park C, Improved GPS-based satellites relative navigation using femtosecond laser relative distance measurements, J. Astron. Space Sci. 33, 45-54 (2016). https://doi.org/10.5140/JASS.2016.33.1.45   DOI
20 Mayer-Gurr T, Behzadpour S, Ellmer M, Kvas A, Klinger B, et al., ITSG-Grace2016 - Monthly and daily gravity field solutions from GRACE, GFZ Data Services (2016). https://doi.org/10.5880/icgem.2016.007   DOI
21 Oh H, Park E, Lim HC, Lee SR, Choi JD, et al., Orbit determination of high-Earth-orbit satellites by satellite laser ranging, J. Astron. Space Sci. 34, 271-280 (2017). https://doi.org/10.5140/JASS.2017.34.4.271
22 Reigber C, Schmidt R, Flechtner F, König R, Meyer U, et al., An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S, J. Geodyn. 39, 1-10 (2005). https://doi.org/10.1016/j.jog.2004.07.001   DOI
23 Tapley BD, Bettadpur S, Watkins M, Reigber C, The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett. 31, L09607 (2004). https://doi.org/10.1029/2004GL019920
24 Ries J, Bettadpur S, Eanes R, Kang Z, Ko U, et al., The development and evaluation of the global gravity model GGM05, Center for Space Research at The University of Texas at Austin Technical Report, CSR-16-02 (2016).
25 Shang K, Guo J, Shum CK, Dai C, Luo J, GRACE time-variable gravity field recovery using an improved energy balance approach, Geophys. J. Int. 203, 1773-1786 (2015). https://doi.org/10.1093/gji/ggv392   DOI
26 Shin K, Oh H, Park SY, Park C, Real-time orbit determination for future Korean regional navigation satellite system, J. Astron. Space Sci. 33, 37-44 (2016). https://doi.org/10.5140/JASS.2016.33.1.37   DOI
27 Wei Z, Houtse H, Min Z, Meijuan Y, Xuhua Z, Effect of different inter-satellite range on measurement precision of Earth's gravitational field from GRACE, Geodesy Geodyn. 3, 44-51 (2012). https://doi.org/10.3724/SP.J.1246.2012.00044   DOI
28 Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, et al., GGM02 - An improved Earth gravity field model from GRACE, J. Geodesy 79, 467-478 (2005). https://doi.org/10.1007/s00190-005-0480-z   DOI
29 Thomas JB, An analysis of gravity-field estimation based on intersatellite dual-1-way biased ranging, Jet Propulsion Laboratory at California Institute of Technology Technical Report, JPL Publication 98-15 (1999).
30 Vallado DA, Fundamentals of astrodynamics and applications, 4th edition (Microcosm Press, Hawthorne, 2013).
31 Weigelt M, The acceleration approach, in Global gravity field modeling from satellite-to-satellite tracking data, eds. Naeimi M, Flury J (Springer, Cham, 2017), 97-126.
32 Hughes SP, General Mission Analysis Tool (GMAT), NASA Goddard Space Flight Center Technical Report, GSFC-E-DAA-TN29897 (2016).
33 Wu SC, Kruizinga G, Bertiger W, Algorithm theoretical basis document for GRACE Level-1B data processing V1.2, Jet Propulsion Laboratory at California Institute of Technology Technical Report, GRACE 327-741 (JPL D-27672) (2006)