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Abstract

Automation of the key flight dynamics operations for the geostationary orbit satellite
mission is analyzed and designed. The automation includes satellite orbit determi-
nation, orbit prediction, event prediction, and fuel accounting. An object-oriented
analysis and design methodology is used for design of the automation system. Au-
tomation scenarios are investigated first and then the scenarios are allocated to use
cases. Sequences of the use cases are diagramed. Then software components and
graphical user interfaces are designed for automation. The automation will be applied
to the Communication, Ocean, and Meteorology Satellite (COMS) flight dynamics
system for daily routine operations.
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1. Introduction

Automation of the satellite mission control is very important to modern satellite operation envi-
ronment in two reasons. One is the saving of the man power in the satellite mission control and the
other is to prevent satellite operator from mistakes in manual operation process. Normally, automa-
tion of the satellite mission operation starts from daily routine operations. The automation makes
the satellite operator focus on more important and urgent mission operation. Nowadays autonomous
systems should be applied not only in mission control centers on the ground, but also on spacecraft,
on rovers, and other space assets (Truszkowski et al. 2006).

Satellite mission control consists in satellite tracking and ranging, telemetry reception and pro-
cessing, command generation and transmission, satellite mission scheduling and planning, space
flight dynamics operations, and satellite simulations. A successful satellite mission control opera-
tion can be achieved by the man power and the control system in harmony.

Flight dynamics operation for a geostationary satellite mission includes spacecraft Orbit Deter-
mination (OD), Orbit Prediction (OP), Event Prediction (EP), station-keeping maneuver planning,
station-relocation maneuver planning, and fuel accounting (FA) (Lee et al. 2008b). Flight dynamics
operations are normally carried out as an off-line processing using flight dynamics computer during
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Figure 1. Functional architecture of the FDA and FDS.

the normal business hours. Input data to flight dynamics operations are satellite tracking data from
ground station antenna and state-of-health data from real-time telemetry processing. Output data
from flight dynamics operations are satellite antenna pointing data for tracking antenna, satellite
orbit and event data for mission planning, and orbit determination and prediction data for payload
processing.

Satellite orbit determination and prediction are the most important functions in normal flight
dynamics operations. The orbital elements estimated from the orbit determination are used as basic
input data for satellite orbit prediction and event prediction. The orbit prediction and event prediction
data should be used for satellite mission planning.

Automation of the routine flight dynamics operations including orbit determination and orbit
prediction has been successfully implemented and tested for the low Earth orbit satellite operations
of the KOMPSAT series satellites (Lee et al. 2008a). It has a very similar functionality of NASA’s
Orbit Determination Automation System (ODAS) (Mardirossian et al. 1989, Chapman et al. 1994).

In this paper, automation of the key flight dynamics functions for satellite OD, OP, EP, and FA
are analyzed and designed for the geostationary satellite mission operations. Object oriented analysis
and design methodology is used for system automation. At first, automation scenario is investigated
and then the scenario is allocated to use cases and sequences. Unified modeling language is used for
the system analysis (Pooley & Stevens 1999). Software components are extracted and the graphical
user interfaces are designed. Communication, Ocean, and Meteorology Satellite (COMS) Flight
Dynamics System (FDS) is used for the target system for automation.

2. Analysis of the Flight Dynamics Automation

2.1 Flight Dynamics System and Its Automation

Flight Dynamics System (FDS) is a computer based software system. The FDS for the geosta-
tionary satellite mission includes satellite OD, OP, EP, station-keeping maneuver planning, station-
relocation maneuver planning, and FA. The FDS is operated by the system management and database
management. Thruster modeling is a hidden function of the FDS for thruster firing related calcula-
tions. The FDS is normally supported by graphical user interface for easy operation, regardless of
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Figure 2. Domain modeling of FDA and FDS.

the automation.

Flight Dynamics Automation (FDA) focuses on automation of OD process, OP process, EP
process, and FA process. OD estimates the orbital state of a satellite using tracking and ranging
data. Normally, the satellite orbit will be determined once a day using two or three days tracking
and ranging data. OP propagates the orbital state of a satellite using the orbit determination results.
The OP results will be used for satellite mission planning and payload processing. EP finds various
orbital events for satellite mission planning and operations. The EP results can be used in mission
planning and payload data users. FA estimates the satellite fuel consumption during the thruster
firing operations using telemetry data from satellite. All of the FDA will be processed once in a day.
The FDA is the driver of the related functions in FDS. Figure 1 illustrates a high level S/W functional
architecture of the FDA and FDS.

Figure 2 shows the domain modeling figure of FDA and FDS. FDA is invoked by the specified
time and data. Time Checker is responsible to generate an event that is related with periodic job or
specific time. Data Monitor is another event generator watching on the specific data. Event Catcher
identifies an event that is triggered by Time Checker and Data Monitor. Then the Event Catcher
generates event to execute the FDS services. The operator can command and interrupt the FDA.

2.2 Automation of Orbit Determination

OD provides the estimated position and velocity of the satellite based on the measurement data.
A batch weighted least square estimation is normally performed everyday using the angle tracking
and ranging data from ground station. A priori orbit state from orbit stack data file is used for
starting of the orbit estimation. Automation of OD focuses on the input and output file handling and
execution of the OD program. Automation scenario of OD is as follows.

» At predefined time, check if there is a new tracking data file in a designated directory (includ-
ing data transmission failure check)
® Generate a new input data file for orbit determination program
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Figure 3. Use case diagram and sequence diagram for automatic orbit determination.

Execute orbit determination program ) '
Evaluate the orbit determination results (including failure check)
Generate a report file for orbit determination

Update orbit stack data . ) .
ove the old track data file to the specified directory according to the OD execution result

(ex: Success/Fail/Update Success/ Update Fail)

Figure 3 shows the use case diagram and sequence diagram for automation of the orbit determi-
nation.

2.3 Automation of Orbit Prediction
OP provides the future position and velocity of the satellite based on the orbit determination

results. Normally, the OP is performed using the numerical integration of the satellite orbit equation.
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Figure 4. Use case diagram and sequence diagram for automatic orbit prediction.

Automation scenario of OP is as follows.

At predefined time, check if there is a new orbit stack data in a designated directory
Generate a new input data file for orbit prediction program

Execute orbit prediction program

Evaluate the orbit prediction results {including failure check)

Generate a report file for orbit prediction

Figure 4 shows the use case diagram and sequence diagram for automation of the orbit predic-
tion.
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Figure 5. Use case diagram and sequence diagram for automatic event prediction.

2.4 Automation of Event Prediction

EP provides Sun eclipse time due to the Earth and the Moon, satellite sensor intrusion time,
ground station sun-interference time, and station-keeping box boundary of the spacecraft. The event
prediction also provides the various orbital events such as nodal crossing time and apsidal passing
time. Automation scenario of EP is as follows.

e At predefined time, check periodically if there is a new event prediction data in a designated

directory

Generate a new input data file for event prediction

Execute event prediction program if necessary

Evaluate the event prediction results (including failure check)
Generate a report file for event prediction

File transfer to related subsystems for satellite operations

Figure 5 shows the use case diagram and sequence diagram for automation of the event predic-
tion.
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Figure 6. Use case diagram and sequence diagram for automatic fuel accounting.

2.5 Automation of Fuel Accounting (FA)

Fuel accounting provides the capabilities for analysis of remained fuel mass inside the space-
craft fuel tank by telemetry data. Fuel accounting consists of two programs. Pressure, Volume,
and Temperature (PVT) method using temperature and pressure of the fuel tank transmitted from
telemetry data and Thruster-On-Time (TOT) method that calculates remaining fuel accounts using
pulse of the thruster firing from telemetry data. Automation scenario of FA is as follows.

e At predefined time, check if there is a new telemetry data in a designated directory (including
failure check)

e Generate a new input data file for fuel accounting program
e Execute fuel accounting program

273
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Figure 7. Package diagram of FDA and FDS.

» Evaluate the fuel accounting results (including failure check)
* Generate a report file for fuel accounting
e Update the spacecraft database

Figure 6 shows the use case diagram and sequence diagram for automation of the FA.

3. Design of the Flight Dynamics Automation

Design of the flight dynamics automation consists in package design, class design, component
design, deployment design, and user interface design. It is a variation of the 4+] model view of
system architecture by Kruchten (1995). Figure 7 shows package diagram of the FDA and FDS.
There are FDA Dynamic Link Library (DLL) and FDA Graphical User Interface (GUI) with their
interfaces. :

Figure 8 shows the component diagram of FDADLL and FDSGUI. In the FDADLL, CSer-
viceExecuter plays an important role to manage the execution of the application program. By the
request of CEventCatcher, CServiceExecuter executes the function of OD, OP, EP, and FA services.
CTimeChecker defines the functions that manage the time elapsing sequence and the specific time
conditions. CEventCatcher has the function to check the change of FDA related data and to request
the FDS service execution by the time elapsing event handling. CDataManager has the function to
generate and manage the FDA related input and output data. In the FDSGUI, FrmAutomationMain
manages all of the parameter settings for the application program and related interfaces. FrmAu-
tomationMain also displays FDA execution logs and results. The other classes in the FDSGUI
provides the user interfaces for the setting of general parameter, external interface parameter, and
operation parameters in each application program.

FDA will be collocated in the FDS computer system. And the FDS computer is linked via LAN
with related system computers. FDS and the other systems are communicated via FTP protocol.
Figure 9 shows the deployment diagram for FDA and other systems.

Figure 10 shows the design of automation main Graphical User Interface (GUI). The GUI shows
the network status of Tracking, Telemetry and Command (TTC), Real-time Operations System
(ROS), and Mission Planning System (MPS) for data exchange. The execution time and interval
for the four FDS application programs can be set in the GUL The status of the automation is dis-
played in the right hand side.

Figure 11 shows the design of FDA OD and OP parameters setting user interface. The parame-
ters setting user interface is very similar to the COMS FDS GUI because COMS specific operations
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Figure 8. Component Diagram of FDADLL and FDAGUL

such as wheel off-loading and station-keeping maneuver should be included.

Figure 12 shows the design of EP and FA parameters setting user interface. EP duration can
be changed by operator for a day, a week, a month, or user defined days. Wheel off-loading set-
point management is the COMS specific functions to calculate set-point parameters. Ground station
should be selected in EP to calculate the time for the ground station antenna interference due to

the sun. For the FA automation, either PVT or TOT can be selected to estimate the remaining fuel
amount of the spacecraft.
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4. Conclusions

Automation of the key flight dynamics operations for geostationary orbit satellite mission con-
trol have been analyzed and designed. Daily routine operations including satellite orbit determi-
nation, orbit prediction, event prediction, and fuel accounting have been successfully designed for
implementing to COMS flight dynamics system. An object oriented analysis and design methodol-
ogy have been applied to scenario investigation, use case modeling, domain modeling, and software
architecture design. Software architecture design includes package design, class design, compo-
nent design, deployment design, and user interface design. The flight dynamics automation will be
implemented and tested in the near future for COMS mission operations.
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