Estimation and Prediction-Based Connection
Admission Control in Broadband Satellite Systems

We apply a “sliding-window” Maximum Likelihood (ML)
estimator to estimate traffic parameters of On-Off source
and develop a method for estimating stochastic predicted
individual cell arrival rates. Based on these results, we pro-
pose a simple Connection Admission Control (CAC) scheme
for delay sensitive services in broadband onboard packet
switching satellite systems. The algorithms are motivated
by the limited onboard satellite buffer, the large propagation
delay, and low computational capabilities inherent in satellite
communication systems. We develop an algorithm using
the predicted individual cell loss ratio instead of using steady
state cell loss ratios. We demonstrate the CAC benefits of
this approach over using steady state cell loss ratios as well
as predicted total cell loss ratios. We also derive the predic-
tive saturation probability and the predictive cell loss ratio
and use them to control the total number of connections.
Predictive congestion control mechanisms allow a satellite
network to operate in the optimum region of low delay and
high throughput. This is different from the traditional reac-
tive congestion control mechanism that allows the network
to recover from the congested state. Numerical and simula-
tion results obtained suggest that the proposed predictive
scheme is a promising approach for real time CAC.
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[. INTRODUCTION

Future satellite-based communication systems will be ex-
pected to support a wide variety of multimedia services. To ac-
commodate these diverse services with their inherent traffic
fluctuations while efficiently utilizing the spectrum, onboard
packet switching capabilities should be implemented at the sat-
ellite [1], [2].

To achieve both efficient utilization of the space-segment (or
satellite) resources and acceptable QoS,, for each traffic class m,
intelligent traffic management protocols that incorporate con-
gestion/flow control must be provided to ensure individual
quality of service objectives. Congestion control requires proper
monitoring and control of traffic flow. Because congestion may
be predicted, closer control at the cell burst and call-level can
be placed on traffic flow. Before traffic is admitted to the net-
work, the CAC should be applied to ensure that individual
quality of service objectives can be satisfied. Although there
are many QoS,, requirements, i.e., cell loss ratio, individual cell
loss ratio, saturation probability, delay, and jitter etc., in this paper,
individual cell loss ratio and saturation probability at the down-
link are chosen as the QoS measures.

The congestion and resource allocation problem has been
extensively studied for terrestrial broadband ATM networks
[3}H7]1, [26]. However, large propagation delays (typically 125
ms), small onboard buffers, and low computational capabilities
characteristic of satellite systems make most of the proposed
schemes inappropriate for satellite networks. Basically, there
are two kinds of congestion control schemes: reactive and pre-
ventive. However, feedback-based reactive schemes may fail
due to the propagation delay. Because of propagation delay and
the desire to utilize the expensive bandwidth of satellite net-
works efficiently, it may be necessary to introduce larger buf-
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fers than typically found in terrestrial ATM switches. Thus, we
propose a predictive scheme that incorporates the ability to
predict the future cell loss behavior and makes control deci-
sions that prevent congestion rather than react to congestion
that has already occurred.

To predict congestion and guarantee QoS,,, we need to es-

timate the individual cell loss ratio. For traffic modeled as a su-
perposition of On-Off sources, many approaches for evaluating
the cell loss ratio have been proposed. Because of its mathe-
matical simplicity and tractability, the most attractive approach
approximates the actual arrival process to the buffer by a con-
tinuous fluid flow [9]. To obtain the exact solution of the cell
loss ratio by Matrix Geometric techniques [8], it is necessary to
solve a set of matrix equations which is time consuming. Many
other approximations, such as Markov Modulated Determinis-
tic Process (MMDP) and Markov Modulated Poisson Process
(MMPP), are also available. However, due to their analytical
and numerical complexity, they are not appealing from the
practical point of view. Since the connection setup time is con-
strained, these rather complex models are not practical.

Most real world traffic is bursty because most sources are
transient. We desire a scheme which optimizes both the tran-
sient and the steady state performances. But the queuing analy-
sis found in current fluid model approaches provides only
steady state results [41H 7], [10] due to the complexity of modeling
transient behavior. To our knowledge, a general treatment of
predictive or transient solutions to this single server queue has
not been presented. Predictive solutions under more limited
conditions are presented in [11]-{13]. In these papers, we pre-
sent a general predictive scheme that outperforms steady state
schemes. Information such as the measured network load may
be used when performing the CAC function. This may allow a
network to achieve higher network utilization while still meet-
ing the network performance objectives. The CAC function is
network specific [14].

Motivated by this work, this paper presents a simple and ef-
ficient traffic estimation and cell loss prediction approach to
control congestion. Measurement and estimation-based con-
nection control would provide better network utilization than
using pre-specified traffic parameters. Instead of requiring the
user to explicitly specify his traffic, the network attempts to
“estimate” the traffic parameters of existing connections by
making on-line measurements. This approach has several ad-
vantages.  First, the user-specified traffic descriptor can be
simple and rough (i.e., peak rate, mean rate, burstiness, and
QoS requirement) because the traffic estimator will find exact
traffic descriptor. Second, an overly conservative specification
does not result in an overallocation of resources for the entire
duration of connection.

The organization of the paper is as follows. In section II, we
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describe the network architecture. The traffic estimator is pre-
sented in section III. In section IV, we derive expressions for
predicting cell loss ratio and individual cell loss ratio. A CAC
algorithm is applied in section V. In section VI, we present nu-
merical and simulation results. Finally, we conclude in section
VIL

II. PROBLEM FORMULATION

1. Network Architecture

As technology advances, more onboard processing capability
can be incorporated in satellites. It is desired to avoid computation-
intensive procedures onboard. Thus, distributed techniques in
flow and congestion control may be more appropriate. Figure 1
shows the network architecture. The up-links may use TDMA,
MF-TDMA, FDMA, CDMA or MF-CDMA techniques. The
downlinks use TDM. We assume that for MF-TDMA uplink,
we may use Media Access Control (MAC) protocol using
fixed-rate demand assignment. Earth stations are interconnect-
ed via a satellite switch with output buffering [2] and shared
memory [15]. The shared memory approach provides more
flexibility and better memory utilization. Recently, memory
technology advanced rapidly, and the memory access speed is
no longer a critical part of the whole structure, especially in
small satellite switches. For example, as a result, the shared-
buffering ATM switches seem to be the most promising archi-
tecture [16]. The satellite has a switching fabric capable of
routing cells that arrive on the up-links to their destination
downlink. The introduction of downlink queue improves the
utility of downlink capacity by allowing for statistical multi-
plexing. Within each Virtual Path (VP), there are M classes of
virtual circuit connections (VCCs), each with its own QoS,,
requirements. Suppose that N(= N, +:--+ N, +---+ N,,) in-

dependent heterogeneous On-Off sources (connections) are
connected to a satellite downlink, where N,, denotes the number

Onboard satellite

Earth stations

Onboard switch | K c

N, class 1 sources " T Downlink
Connection
control
signals

0S,, predictor
N, class M sources Q05 P

Fig. 1. Connection control architecture for broadband satellite
communication.

Yeong MinJang 41



of connections of class m. A VP therefore can be modeled as a
bufferless single server system with output buffered downlink
capacity of C bits/sec. A QoS,, predictor at the downlink pre-
dicts individual cell loss ratio for a time #(=d, + d,) ahead. The

earth stations dynamically, yet optimally reject the new con-
nections after receiving a choke signal from the satellite.
The symbols are represented in Table 1.

Table 1. Explanation of symbols.

symbols meaning
QoS QoS of total traffic
QoS,, QoS of class m traffic
CLR(t) transient total burst-level CLR
P (t) transient burst-level saturation probability
ICLR, (1) transient individual burst-level CLR of class m traffic
QoSicrR,onset required QoS,, for congestion onset
Q0Sicir, abaemeny | Tequired QoS,, for congestion abatement

2. QoS Measures

Our performance measures are P, (t) and CLR(t). P, (¢)
is the fraction of time that the aggregate demand for bandwidth
from all sources exceeds the nodal bandwidth at time ¢ when
the number of active class-m sources at time 0 is Y,,(0) (see
Fig. 2). The number of active sources of class-m at time ¢ =0
(7,,(0)) is measured using the Virtual Channel Identifier (VCI)
of each VCC. We shall also investigate CLR(?), the burst-
level cell loss ratio.

Excess traffic

¥

J A

Overload period
A
Aggregate arrival rate

A 4 A 4

Downlink|capacity, C

Fig. 2. Overload and underload periods.

3. Traffic Model

Although the traffic characteristics of future onboard satellite
networks are hard to estimate with complete accuracy, there are
a number of voice and video models reported as On-Off source
models [17]-[19], and this On-Off model has been commonly
used to model a voice source with speech activity detection.
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We assume that simple Markovian models, i.c., models based
on the binary On-Off model, are sufficient to capture the short
range correlation for telephone speech and video telephone. An
aggregate of such binary Markov sources can be used to model
a video source [19]. Each source operates independently. X
minisources are used to model Y variable rate video sources
(X >>Y). In [19], it was found that with X = 20*Y, the
analytical results using a discrete-state continuous-time Markov
process model agree closely with simulations using a continuous-
state Autoregressive Markov model. Heyman and Lakshman
[20] suggest that long-range dependence is not an important
property for most applications of a VBR-video-source model.
They show that some Markov chain models will describe VBR
video-conference traces. Lucantoni et al. [21] propose a
Markov-renewal process model to describe a single source.
Due to the statistical nature of multimedia traffic, the modeling
of incoming traffic characteristics plays an important role.

Each source is modeled as an On-Off source. We assume
that a series of cells arrive in the form of a continuous stream of
bits to use a fluid model. We also assume that the “OFF” and
“ON” periods for sources of class m are both exponentially
distributed with parameters A, and u,, respectively. The
rate of flow from the “ON” state to the “OFF” state is u,, and

from “OFF” to “ON” is A,,. In this traffic model, when a

source is in the “ON” state, it generates cells with a constant

. . . 1 . ..
interarrival time, e seconds/bit. When the source is in the

“OFF” state, it does not generate any cells. See Fig. 3 for binary
On-Off model for class m traffic. We assume that N,, class m

sources of the N connections sharing a downlink have the same
traffic parameters (A,,, U,,, R, ). The state of a source of class

m is characterized by an underlying Markov process whose in-
finitesimal generator is given by

_FA, A

O
m 1
Qm H“m “mH ()

1
My ==

for m=1,2,---,M. Letusdefine A, :L, 5

m

4. Outline of Predictive CAC Algorithm

A predictive connection control algorithm is implemented
onboard the satellite and executed for each downlink. The algo-
rithm is an on-line, per-connection (not per-QoS class) based
estimation (measurement) algorithm that runs continuously
using a sliding-window mechanism. The network management
function resets the algorithm for new estimation. The algorithm
is executed whenever we have a new connection request. The
operation period of the algorithm is a trade-off between power
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Fig. 3. On-Oft model for class m traffic.

consumption onboard the satellite and estimation accuracy. We
run the algorithm whenever we have a new connection or con-
tinuously for the entire duration of a connection or until the algo-
rithm is reset by network management. If a connection is rejected,
we throw away the estimation results for that connection.

The connection acceptance decision must be made within
the required allowable connection set-up latency in accordance
with the received connection set-up request. This means that the
CAC must operate in real-time, even when various kinds of traf-
fic are multiplexed. With the QoS,, requirements we can define
the two thresholds, Q0Scp, (onsery and  QOS iy, (abatement) -
The selection of Q0Scir (onsery A Q08 c1x, (abatemensy VAlUES
depends on the trade-off between QoS,, requirement and sat-
ellite network efficiency. These normally depend on imple-
mentation and are beyond the scope of this paper.

An outline of the algorithm is as follows (see also Fig. 4):

1) Characterize source parameters: For each traffic source
using the downlink, we collect sample data of the On-Off traffic
for a number of active and idle periods and compute these esti-
mates, ¢, and 6,,, using the ML method. Details are provided
in section III.

2) Analyze to get QoS measure: Based on the estimated pa-
rameters, @, and 6,,, the number of connections »,,, and the
number of active sources at the current time ¢ = 0, i, predict
the individual cell loss ratio, /CLR,, (¢) attime ¢=0.25 sec.

« If ICLR,(t) > Q0S ik, (onsery Under no congestion state,
then send congestion onset messages to all class-m sources.

+ Or, if the system is currently congested and ICLR,, () <
Q08 1¢1r, (abatemenry» then congestion has ended and a conges-
tion abatement message is sent to all class-m sources.

3) Find the number of connections: Whenever the ICLR, ()
of a source is higher than the  Q0S¢;z (o) T€qUirement under
no congestion state or the Q0S¢ x (uatemenry TEQUirement under
congestion state, the satellite controller will compute (using results
obtained in 1 and 2 above) the optimum number of connec-
tions (N,,) of class-m sources.
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Congestion = No l ;
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Congestion = Yes

Find N, to maximize
the number of connections
with constraint with constraint
ICLR, (t) < QOSIL'LR,,, (onset) I CLRm (1) < QoS

¥ v

Send congestion onset
signals to earth stations

v

Reject new connections
*
aslongas N, <N,

Find N, to maximize
the number of connections

ICLR,, (abatement)

Fig. 4. Predictive CAC algorithm.

To satisfy the QoS,,, the satellite controller would accept
any new connections as longas N, > N, , the number of cur-
rent connections. Even though current N,, is measured, we have
to find the N, for determining whether the satellite controller
can accept the new connection or not. Details are provided in
sections V.

Some “memory” is required to record the current congestion
state so that the connection control can react accordingly. We
implement this memory element by adding a hysteresis loop as
shown in Fig. 5.

At each earth station, the following control actions are taken:

+ Congestion onset message received: Reject the new class-m
connection requests.

 Congestion abatement message received: Allow new class-
m equests to connect.

III. ESTIMATION OF ¢, AND 6, USING ML
ESTIMATOR

Most papers [4]-{7], [10] are based on the traffic parameters
specified by a user prior to service, and do not consider the actual
cell stream to check if it satisfies the traffic parameters. Therefore,
the link utilization may become unnecessarily low. In order to
overcome this effect, CAC using estimation/measurement/pre-
diction of cell stream is considered. The traffic patterns are different
depending on the nationality, language, culture, personal char-
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# of acceptable connections
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Individual CLR

QOS¢ g abatement

Fig. 5. Step function with hysteresis.

acteristics and so on. For On-Off speech, Table 1 of [18] gives
a list of the traffic parameters for 32 speakers in 16 conversa-
tions. All traffic patterns are different. To predict the individual
cell loss ratio, we have to accurately estimate three critical pa-
rameters: peak rate, burst length, and burst interarrival time.
The traffic generated by individual connections must be moni-
tored and controlled to ensure that it is consistent with traffic
parameters agreed on at the connection establishment. We have
to estimate these parameters accurately and quickly because
source parameters will affect the ICLR, (¢). Here, we propose
an ML estimator to estimate On-Off traffic parameters. Such
an estimator is useful because it yields the smallest estimation
errors in the absence of a priori statistics.

Recall that we have assumed that the sequences of active and
idle periods (observed at the downlink) are exponentially dis-
tributed random variables. Let the random point process of one
source (the number of arriving cells per slot per connection) be
denoted by O or 1 (see Fig. 6).

1 1 2 2 n; n,
00000111111000000001111............ 0000000001111111
A S ~_ 7~

i
L,

15, L, L, L L

Fig. 6. ML diagram of class m source.

Let 1

Ims>"" km:

1“  and 1

:nm

I!  be the

Ims>"" km: " bym

length of successive active and idle penods, respectively. The
estimation is based on the measurement of a fixed number 7, of
active periods and a fixed number #; of idle periods of the On-
Off sources. It is assumed that all idle and active periods are iid
random variables. After we formulate the likelihood function
[12] of this sample, the ML estimate of 8,, is

A 1 il
On =07 P b)
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Similarly, we obtain the ML estimator of @, :

_ Diabin &

A n;

~ 1
(pm_

The ML estimators defined above provide the best possible
estimates when a priori statistics are not available, and as long
as the statistics do not change with time (stationary). This ex-
tension leads to the following “sliding-window” estimator
structure:

D oy 14
f1,, (k) n,

6, (k) = @)

For large numbers of samples and next short active period
duration, the computational burden required by these estima-
tors may become quite severe. A recursive form for the esti-
mation is

R 1.
= 6m (k - 1) + _[l(k—l)m

0, (k) =—
“© f,, (k) n,

_l(ak—n[,—l)m]' %)

Similarly, we obtain the recursive form for (Z)m (k) :

. 1 . . .
), (k) == =@, (k=) +—[Lrm =L —tym - 6
@, (k) A @, ( ) = a—— (6)

1. Quality Assessment of Sliding-Window ML Estimator

We now evaluate the quality of the ML estimator. For an iid
sequence the sample mean is unbiased for all 8, (k) ,1i.e.,

HGW]—H;% =10 ®) _g k). @

g n,

The Cramer-Rao theorem [22] gives a bound on the mini-
mum achievable variance of any unbiased estimator.

-1 _6.(k)

VarB, (k)] = . ®

2

a ., g
naE%[lnf(lkmﬁm(k))]E

n,

Because 7, is fixed in our estimation procedure, (2) has a
Gamma distribution. The variance of estimated parameter val-
ue is therefore

Hy a 2
VM@WFWM&%%=%M%®F%#L®

Since this value is exactly the same as the Cramer-Rao lower
bound, our estimator is efficient. We find that the larger n,, the
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more closely the values of the estimated about the true mean
0,,(k). Indeed by the Chebyshev inequality, the probability

that an estimate ém (k) deviates by more than & from the true

mean 6, (k) is bounded by P( em(k)

6.k -0, (k)‘>g)<

a
and hence go to zero as n, goes to infinity. Therefore, our esti-
mator is consistent since,

>g]_

(10)

ng —

forall € >0.

IV. PREDICTING QOS MEASURES

1. Transient Saturation Probability

In the previous section, we developed the estimator for
(A,,» U,) which we will use to predict the saturation probabil-
ity and cell loss ratio. We will use a statistical bufferless fluid-
flow model to predict the probability that congestion occurs at
time ¢ based on the traffic statistical behavior and the estimation
attime 0. We assume that N On-Off sources share the capac-
ity C of a downlink. We are interested in the number of active
sources of real-time voice and video traffic on a downlink.
Since we are interested in transient saturation probability, a
formula involving the backward Kolmogorov equations of the
process is used. The number of active class-m sources forms a
birth-death process, with birth and death rates that depend on
the state of the process A,,, =(N,, —k)A, and U, =ku,
(see Fig. 7).

Without loss of generality, we assume that we have two traf-
fic classes. Let P, ; () denote the probability that k class-2 and

J class-1 sources are active. The transitions among states are
expressed as a set of differential equations:

dP, (¢
(;;;() =(N A+ NoA) By o () + 1 By, () + o By (1) (11)
dP, (1) .
];'—jt =N, —k+ 1)A2Pk—l,j(t) +(N, —j+ 1)Al])k,j—l @)
_[(Nl _j)Al +(N2 _k)Az +klflz +j/'ll]Pk,./(t)
+(j + DB 0 () + (k + DUy By (1)
k=2,3,---,N,—-1, j=2,3,---,N, -1 (12)
dP, t
D 2 3o 04 APy O
—(Nody + Ny )PNZ_M ®. (13)

We recognize the above (11)-(13) as the backward Chapman-
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Fig. 7. State transition diagram for two traffic classes sources.
Kolmogorov equations. In matrix form, they can be written as

dP(t) _

0 = OP(1),

(14)
where P(t) is the column vector (F,(¢), By, (1), -+, Fy 5, (1),
Po(t),, Py, ()" and O is a [(N, +1)x(N; +1)]x
[(N, +1)x (N, +1)] matrix. In order to solve (14) for the time-
dependent behavior P(t), we require initial conditions; that is,
F.,;(0) for £=0,1,---, N, and j=0,1, -,
N,. In addition, we further require the following constraint:

we must specify

Ny N

ZZPk,(t)—l

k=0 ;=0

(15)

In (14), Q is a singular matrix with the rank (N, +1)(N, +1)

—1. Thus, we can find the predictive conditional state prob-
ability, P(z), by using the eigenvalues of matrix O:

%‘Slf 0 0 B
—s2t cee
Dg 60 8 Dl
Pt)=v4 07~ P(0), 16
R R G O
do o0 o O
H 0 0 e‘StMﬂ)(A'zﬂ)‘ H

where s,,5,, -, 8y are the eigenvalues of Q and s=0.
V" stands for the right eigenvectors of matrix Q. P(0) is the
column vector with P, 4, (0)
active class-2 and class-1 sources at time 0 are Y,(0) and

=1 because the number of

Y;(0), respectively. The conditional transient saturation prob-
ability is then given by

RyN,+R| N,

SR,

ke, JOUk JI(Roke+ Ry j=C) 20}

P ()= P(A() > C[1,(0),Y(0)) = 17
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where A(f) = R,k + R,j denotes the aggregate arrival rate of

the & active class-2 sources and the j active class-1 sources at
time £.

2. Total Cell Loss Ratio

It is very important that the decision to accept or reject con-
nections is made in real time. To do this, we need a simple and
fast CAC scheme. Such a scheme should be able to predict
the cell loss ratio rather than the steady state cell loss ratio. In
the previous section, we developed the estimator for ()(m L)
which we will use to predict CLR(t) and ICLR, ().

Next we introduce the following definitions:

« CLR(t): the predicted burst-level cell loss ratio at future time 7.
« A(t): the predicted and aggregated average arrival rate at

future time ¢.
« OV(t): predicted average excess traffic at future time 7.

Let A(¢) denote the aggregate arrival rate from Y, (¢) active
sources. In a bufferless system, cell losses occur when A(z) ex-
ceeds the link capacity C. The prediction of CLR(¢) is given by
the ratio of mean excess traffic (OV(¢)) and mean traffic load
(A(t)) at time ¢. The CLR(t) can be solved by using condi-
tional expectations. The predictive CLR(t) is given by:

ov() _ E[(A1)-O)"]
A(t) E[A(@)]

_HlEan-or o =1
E[ELA®)[¥(0) = 1]

CLR(t) =

(18)

Taking into consideration the fact that each of N(= N, +---
+N,,) existing connections belong to one of the M connection
classes, given by an arbitrary initial condition Y(0)=
I =[Y(0) =i, Y¥,(0) =i,,-+, Y,,(0) =i, ], we obtain the con-
ditional moment generating function of A(¢), s = 0:

M
G (s) = E[e™0 1 7(0) = 1] = [ e | ¥,,0) =1,
m=1

M
Ry _- -
[e? “17,(0)= ’m] =[1Gn.cm, =, (5)

m=1

I
=
o

3
i,

r—

e =D+1" " [q, 0™ -n+]" 19

I
—=

3
1,

where A(¢) = zle/\m (¢). Thus,

A(1) = Gy (0) = fA 0)

= 5 Rolindn 0+ (N, ~1,)p, 0] @0)
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To derive p,,(t) and g¢,(f), we can use the forward Chap-
man-Kolmogorov matrix differential equation:

OToo (1) Ty (D0_ Ot (1) 71, (1) LI A,
Bﬂo(t) nJll(t)H BTlo(t) nll(t)%ﬂm

A, O

-1, B

dAy (1) _
dt H

@D

Let AOO ([) = e(/\m +Um )tn-oo (t) Then, e(Am +p )t

m

_Hw
A+

The initial condition A,,(0) =1 determines the constant of in-

A
A—m. Thus, Ay, (1) = M

A+ U,

which can be integrated to yield A, (¢) = Mt 4 B

tegration tobe B = Pttt

m m

A M - .
+—1 S0 Ty (1) = —Fn m__ i) Since

+
A+ Uy Awtly At U,
7, (1) =1-11,(¢), we have

Am =M+ M)t
()= py0) =2 i-e ]
and by symmetry,
Am m =AMt
r[ll (t) = qm (t) = IJ e ot b) (23)

+
Am + l’lm Am + l’lm

where p,, (¢) is the transition probability that a class-m source
is active at future time ¢ given the source is idle at time O.
q,,(t) is the transition probability that a class-m source is active
at future time ¢ given the source is active at time 0.

Let Y, (¢) and Y, (0) denote the numbers of active class-m
sources at time # and 0. Then

oV (1) :XFZN'...

T Oy

X =Ny, Xu =Ny

oy KmRy=C)201  Fu

(P00 =3, 1 7,0 =)

M
x,R, =C)) (24
1

m=

M
where [P(Y, (1) =x, |Y,(0)=i,), the predicted conditional

m=1
state probability, can be derived as
M Xy

I_—ll z:0H lr—nk @ m (t)]\’m _km[l —qm (tj Iy =X Yk

m

3 e )= ]

@5

3. Individual Cell Loss Ratio

We need a simple and dynamic CAC scheme. Also, we may
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need to satisfy the individual QoS requirements. The predicted
individual cell loss ratio, ICLR,(t), for class-m among M

classes of traffic is given by:

ov,(t)

ICLR, (== R

(26)

Taking into consideration that each of N,, existing connec-
tions, given by an arbitrary initial condition Y, (0), we obtain

the conditional moment generating function of A, (¢), s =0:

G,om, 0 (8) = E[emm(’) Y,,(0) = im]
=[puxe =0+ g0 -n+] "1
Thus,
Ay ()= G or0(0) = R, 1w )+ (N, = i) p (0] 28)

where p, () and ¢, (¢) are given in (22) and (23), respec-
tively.

Let Y,(¢)and Y, (0) denote the number of active sources of
class-m at future time ¢ and 0. Then

AW -C)' A, ()0
oV (t)=E
(1) A0 %

x=N, X =Np Xy =Ny

T 0wl(Y L xR —C)20) u
M
Zmzl mem

([P0 =5, 17, (0) =i, {222 ) @)

M
where []P(Y, () =x,Y,(0)=i,) is givenin (25).
m=1

V. OPTIMAL CAC USING INDIVIDUAL CELL
LOSS RATIO

When the traffic source is indirectly connected to the satellite
system via another network, the satellite cannot control the traf-
fic parameters directly. It can only control the connection ad-
mission or the number of connections on each downlink (NV°).
When a subscriber requests to establish a connection with the
satellite, the satellite management function which executes the
bandwidth allocation, will first predict /CLR,,(t) as described
above. For example, for the M = 2 case, we determine the op-
timal number of connections, N. ; , as follows:

NZ = maX{”Z | ICLRZ (ll 7i2 7t) < QOSICLRz(abatement or onset)}' (30)

ETRI Journal, Volume 22, Number 4, December 2000

VL. NUMERICAL AND SIMULATION RESULTS

In this section, we present some results to verify the validity
of our analysis. In Tables 2 and 3, we use S, =10,000 and
S, =1,000 sample points, respectively. The percentage errors
and variances from the real values of @, and 8, in ML ap-
proach are also included. The number of active and idle periods,
n, and n;, is found in order to compare the variance of the es-
timator. We observe that for high valuesof @, and 6, (ie., ¢,=
117.64 for n,=113) the ML estimation method exhibits large er-
rors and variances because n, and n; are small. However, as
we decrease ¢), and 6, , the percentage of error and variances
dramatically decreases because 7, and n; are large. Therefore,
we find that the number of active and idle periods, n, and #;,
affects the estimation quality more than S,,. The more active
and idle periods we collect, the more accurate estimates.

Table 2. ML estimator results for S, =10,000.

8, 8 0, (%error) q; (Yerror) n, Var(,)
7575 | 117.64 | 64.51 (17%) 108.69 (8%) 63 | 66
75.75 | 11.764 | 69.93 (8%) 1207 (2.5%) | 145 | 33
75.75 | 1.1765 | 69.93 (8%) 1.22 2%) 199 | 24
7.575 | 117.64 8.30 (8%) 103.09 (14%) 113 0.6
7.575 | 11.764 7.15 (5.9%) 11.73 (0.2%) | 687 0.07
7.575 | 1.1765 7.52(0.7%) 1.17 (0.2%) | 1506 0.03

Table 3. ML estimator results for S,,= 1,000.

0, (7% é,,‘ (Yoerror) (,Z),,‘ (Yoerror) n, Var(ém )
75.75 | 117.64 | 73.52(3%) 81.30 (45%) 8 717
75.75 | 11.764 | 81.96 (7.5%) | 9.90 (1.9%) 17 337
75.75 | 1.1765| 70.42(7.5%) | 1.30(10%) 20 286

7.575 | 117.64 5.41(40%) | 71.94 (63%) 5 11

7.575 | 11.764 7.62 (6%) 13.81 (15%) 68 0.84

7.575| 1.1765 8.02 (5.6%) 1.1468 (2.5%)| 145 0.39

For real time and low power hardware, we can easily im-
plement a “sliding-window” ML CMOS module onboard the
satellite. For any parameters of Table 2 and Table 3, the ML
estimator takes less than 1 ¢ sec for all samples [23]. Because
the number of VCs as well as the number of input and output
ports of the onboard switch are small, VC-based estimation
may not put large overhead for traffic management. Our results
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suggest that the ML is a suitable estimator for this application.

For the numerical calculations of the predicted CLR(t), we
consider the following system: N, =25 and N, =25 PCM
coded sources with R, =64 kbps, R, =32kbps, A, =A, =0.5
and f[1, = f1, =0.833 multiplexed onto a downlink of capac-
ity C =1.544Mbps. We assume that the mean connection du-
ration of a source is 180 seconds for voice. Thus, the mean in-
terarrival time is 3.5 seconds for 50 On-Off sources. So we
may assume that no new connection arrives during the predic-
tion time (0.25 seconds).

In Fig. 8, we depict the predicted CLR(¢) as a function of
the prediction time (in seconds) for various values of the initial
conditions, ¥;(0) and Y,(0).

0
2|
Y1(0) = Y-(0) =20
S Y1(0) = Y;(0) =10 —
=)
g -6 |
il
g 8 Y1(0)=Y2(0)=0
@
S -10
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z -12
>
@D
-14
-16
-18
0 1 2 3 4 5 6 7
Prediction Time, t (sec)

Fig. 8. Predicted CLR(?).

We observe that after approximately 4.0 seconds the predicted
CLR(t) will converge to the steady state value, CLR()
(obtained using the result presented in [6]). The round trip delay
in a geostationary (GEO) communication satellite system is
0.25 seconds. We observe significant differences in the results
obtained as a function of the different initial conditions (the
number of active sources at the end of the estimation phase) of
each traffic class. For example, at £ = 0.25 sec, we observe that
the predicted CLR(¢) given Y,(0)=0and Y,(0)=01is on
the order of 10" while the steady state CLR(¢) is on the order
of 10™*. For another example, at ¢ = 0.25 sec, we observe that
the predicted CLR(¢) given Y,(0)=20 and Y,(0) =20 is
approximately 10™° while the steady state CLR(f) is
10™*°. We, therefore, conclude that the computation of predicted
CLR(¢) is more accurate and can lead to significantly different
values of the steady state CLR(¢#) and consequently of the
connection control decisions. We first compare the results ob-

48  Yeong Min Jang

tained for the predicted CLR(t) with the steady state CLR(¢)
(which is independent of the number of active sources of each
class at the beginning of the period).

In Fig. 9, we depict the predicted saturation probability as a
function of the prediction time (in seconds) for various values
of the initial conditions, Y;(0) and Y,(0). We observe that
after approximately 4.0 seconds the predicted saturation prob-
ability converges to the steady-state saturation probability.
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Fig. 9. Predicted saturation probability.

The predicted saturation probability is always larger than the
predicted cell loss ratio. While the criterion CLR(¢) takes into
account that not all cells are lost during overload, the criterion
P, (¢) is based on the fraction of time during which is cell loss.

We have to satisfy the individual QoS requirements. We can find
the optimal number of connections for each class under each class
0o0S,, requirements. In Fig. 10, we plot the predicted ICLR,, (¢)
as a function of the prediction time (in seconds) for two classes of
traffic. We observe that given values of (}( ws ) and traffic
classes per connection, the predicted ICLR, (¢) is different for
each traffic class. This is due to the fact that the traffic class 1 with
R = 64 kbps has a higher traffic arrival rate during “ON” period,
so ICLR,(t) islarger than CLR(t) and ICLR,(¢t). Thus, the
difference between predicted CLR(t) and predicted ICLR, (¢)
is so significant that it is necessary to make CAC, not based on
average CLR(¢), but on individual /CLR,, (¢) in order to guar-
antee a specific QoS,,.

We also obtain the performance of the proposed CAC algorithm
(as depicted in Fig. 4) to obtain the maximum number of connections,
N, . We assume the following network parameters: ¢ = 0.25sec,
R, =64 kbps, R, =32kbps, C =1.544Mbps, i =10, i, =
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Fig. 11. The maximum number of class 2 connections versus the
number of class 1 connections.

15, A=4,=05 f,=0,=0833 and Q0S s wmenen
=Q0S, =107. In Fig. 11, we observe that as the number of

class-1 connections increases, the maximum number of class-2
connections will decrease. The peak rate strongly influences
the cell loss rate and an increase in burst length cause signifi-
cant increases in cell loss rate at high peak rates. There is a need
to discourage long bursts of high intensity to effectively use
network resources [24]. When the initial number of active
sources is 20 and 20, the predictive approach determines a
lower number of connections than the steady state approach.
But whenever the initial number of active sources are 0 and 0,
the predictive approach determines a larger number of connec-
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tions than a steady state approach. We can see the difference
between CLR-based CAC, saturation probability-based CAC
and ICLR-based CAC. Therefore, we can clearly see a differ-
ence between predictive and steady state approaches for CAC.
Generally, the number of connections based on the transient
saturation probability fewer than those based on the transient
cell loss ratio under the same QoS requirements

_ _ =5
(QOSICLRZ (abatement) — QOSPM - 10 )

VII. CONCLUSIONS

In this paper, we introduced a predictive CAC architecture
and algorithms for future onboard satellite systems that guar-
antee the QoS,, for multiple class traffic. The proposed connec-
tion control scheme considers the unique features of satellite
communication; for example, buffered onboard satellite, large
propagation delays, and a relatively low computational com-
plexity. On-line measurements for established connections and
traffic parameters specified by a user for new connections are
used to determine the CAC based on the predicted individual
cell loss ratio. We observed that after approximately 4.0 sec-
onds the predicted CLR(¢) will converge to the steady state
value, CLR(o). We successfully derived predictive saturation
probability, predictive burst-level cell loss ratio, and predictive
individual burst-level cell loss ratio. For multiple classes of
sources, numerical and simulation results show the importance
of using a predictive analysis to compute the ICLR, (t) as
opposed to a steady state analysis. An advantage of this predic-
tive scheme is that the network may be more fully utilized because
network states are almost the transient state, instead of the
steady state.

For continuous resource management, we proposed a “sliding-
window” ML estimator which can be easily implemented using
a low power CMOS module for real time purposes. To avoid the
low throughput due to difference between traffic parameters
specified by a user prior to service and the actual cell stream, we
applied the ML estimator to estimate traffic parameters. The
“sliding-window”” implementation effectively follows the varia-
tions in the traffic parameters. The model assumed constant pa-
rameters, but remains valid for time-varying parameters, provid-
ed the variations are slow compared to the time scale of the ob-
servations. A recursive form to save computational burden is also
proposed. Therefore, the proposed ML estimator is the best esti-
mator for a real time On-Off traffic model used for voice traffic
and video telephone traffic.

Therefore, the proposed method provides an accurate and sim-
ple measurement-based congestion prediction and control sche-
me for execution onboard the satellite. The proposed predictive
scheme is an excellent candidate for real time connection control.
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