• Title/Summary/Keyword: Sand filter

Search Result 188, Processing Time 0.022 seconds

Applicability Evaluation of Two-stages and Dual Media Filtration System by the Small-scale Pilot Plant (이단이층 복합여과시스템의 소규모 파일롯 플랜트 적용성 평가)

  • Woo, Dal-Sik;Song, Si-Byum;Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.857-864
    • /
    • 2009
  • This study aimed at developing the two stage and dual filtration system. It has a sand + activated carbon layer above the underdrain system and a sand layer above the middledrain system for pretreatment. When retrofitting an old filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new site. In order to extend the filtering duration, the upper layer of the filter bed consists of the rapid sand filtration with large particles which pre-treats and removes coarse particles and turbidity matters. The middle layer has biological activated carbon(BAC) and granular activated carbon(GAC) to eliminate dissolved organic matters, disinfection by-products precursors etc. The lower layer consists of the sand filtration for the post filtering mode. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in the S water treatment plant in Kyounggi-Do. The stability of turbidity was maintained below 1NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual filtration system, which is almost 2 times higher than S WTP. From analysis result of HPC along the depth of activated carbon + sand layer at 2nd stage, microorganism was mostly not detected, however, increment of HPC was shown as it becomes deeper. It indicates that growth of microorganism is occurred at activated carbon layer.

Life Cycle Impacts of Flexible-fiber Deep-bed Filter Compared to Sand-Filter including Coagulation and Sedimentation in Water Treatment Plant

  • Uh, Soo-Gap;Kim, Ji-Won;Han, Ki-Back;Kim, Chang-Won
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Recently a new technology called the flexible-fiber deep-bed filter (FDF) claimed to replace the conventional sand filter including coagulation and sedimentation filter (CSF) processes in the water treatment plant. Therefore the life cycle assessment (LCA) approach was applied for evaluating the life cycle impacts of FDF compared with those of CSF. The used LCA softwares were the Simapro 6 and PASS and their life cycle impact assessment (LCIA) methodologies were the Eco-indicator 99 and the Korean Eco-indicator, respectively. The goal of this LCA was to identify environmental loads of CSF and FDF from raw material to disposal stages. The scopes of the systems have been determined based on the experiences of existing CSF and FDF. The function was to remove suspended solids by filtration and the functional unit was $1\;m^3$/day. Both systems showed that most environmental impacts were occurred during the operation stage. To reduce the environmental impacts the coagulants and electricity consumptions need to be cut down. If the CSF was replaced with the FDF, the environmental impacts would be reduced in most of the impact categories. The LCA results of Korean Eco-indicator and Eco- indicator99 were quite different from each other due to the indwelling differences such as category indicators, impact categories, characterization factors, normalization values and weighting factors. This study showed that the life cycle assessment could be a valuable tool for evaluating the environmental impact of the new technology which was introduced in water treatment process.

Characteristics of Depth Filtration for Various Filter-Bed Configurations (심층여과지의 여층구성에 따른 여과특성 비교)

  • An, Jong-Ho;Yun, Jae-Heung
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.459-472
    • /
    • 2001
  • The objective of this study is to evaluate the filtration efficiency of deep-bed filters by comparing to single and dual media filters. Pilot-plant tests using four-filter columns were conducted for the comparison of head loss development and filtered water quality. The dual-media filter showed greater initial head loss, but less rate of head-loss development than those of the coarse-sand-0deep-bed filters. For 180 m/day of filtration rate, the dual-media filter produces larger unit production rate by 30-40%, and the turbidities of filtered water were below 0.1 NTU. The initial breakthrough could be effectively controlled by the dual-media filter rather than coarse-sand-deep-bed filters.

  • PDF

Modeling As(III) and As(V) adsorption and transport from water by a sand coated with iron-oxide colloids

  • Ko, Il-Won;Lee, Cheol-Hyo;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.243-247
    • /
    • 2004
  • Tile development of a porous iron-oxide coated sand filter system can be modelled with the analytical solution of tile transport equation in order to obtain the operating parameters and investigate the mechanism of arsenic removal. The adsorbed amount from the model simulation showed the limitation of adsorption removal during arsenic transport. A loss reaction term in the transport equation plays a role in the mass loss in column conditions, and then resulted into the better model fitting, particularly, for arsenate. Further, the competitive oxyanions delayed the breakthrough near MCL (10 $\mu$g/L) due to the competitive adsorption. This is the reason why arsenate can be strongly attracted in tile interface of an iron-oxide coated sand, and competing oxyanions can occupy the adsorption sites. Therefore, arsenic retention was regulated by non-equilibrium of arsenic adsorption in a porous iron-oxide coated sand media. The transport-limited process seemed to be affect the arsenic adsorption by coated sand.

  • PDF

Removal of Non-biodegradable Organic Contaminants in Wastewater from crude oil reserve base Using Pulse UV System (Pulse UV 장치를 이용한 원유비축시설 발생폐수의 난분해성 유기오염물질 제거)

  • Sohn, Jin-Sik;Park, Soon-Ho;Jung, Eui-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.861-867
    • /
    • 2011
  • Wastewater from crude oil reserve base usually contains large amount of non-biodegradable contaminants. The conventional wastewater treatment progress can hardly meet the regulation of wastewater effluent quality. This study investigated the removal of non-biodegradable organic contaminants in wastewater from crude oil reserve base using a pulse UV treatment. The modified process incorporating pulse UV process was set up to treat the wastewater from crude oil reserve base. The treatment process is composed with coagulation and flocculation, micro-bubble flotation, sand filter, pulse UV system, and GAC filter. The results show CODMn was effectively removed by the process with pulse UV system and it can meet the wastewater effluent regulation. The single effect of pulse UV process in CODMn removal was not significant(9~15% based on sand filtered effluent), however with the subsequent activated carbon filter the removal ratio CODMn was increased up to 28% compared to the process without pulse UV syetem.

Selection of Optimum Filter Media in Small-Scale Livestock Wastewater Treatment Apparatus by Natural Purification Method (자연정화공법을 이용한 소형 축산폐수처리장치의 최적여재 선정)

  • Kim, Ah-Reum;Kim, Hong-Chul;Seo, Dong-Cheol;Park, Jong-Hwan;Kim, Sung-Hun;Lee, Seong-Tae;Jeong, Tae-Uk;Choi, Jeong-Ho;Kim, Hyun-Ook;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.285-292
    • /
    • 2011
  • In order to develop livestock wastewater treatment technology by natural purification method, the optimum filter media in small-scale livestock wastewater treatment apparatus for treating livestock wastewater were studied. Removal rates of pollutants under different filter media were in the other of coarse sand ${\fallingdotseq}$ broken stone > zeolite > calcite for COD, zeolite >> broken stone ${\fallingdotseq}$ coarse sand ${\fallingdotseq}$ calcite for T-N, and calcite > coarse sand ${\fallingdotseq}$ broken stone ${\fallingdotseq}$ zeolite for T-P. Based on the above results, the optimum filter media was coarse sand in small-scale livestock wastewater treatment apparatus. To meet acceptable effluent quality standard for livestock wastewater and to improve T-N and T-P removal efficiencies, removal efficiencies of pollutants in small-scale livestock wastewater treatment apparatus with mixed filter media were studied. The removal rates of COD, SS, T-N and T-P in effluent were 84, 94, 65 and 98% in small-scale livestock wastewater treatment apparatus with mixed filter media, respectively. For increasing the T-N and T-P removals in small-scale livestock wastewater treatment apparatus, the mixed filter media are recommended.

Evaluation of Filter Capacity for Sea Dyke Slope Filter Layer by In-situ Rainfall Test (현장 강우재현시험을 통한 방조제 사면필터층의 필터성능분석)

  • Oh, Young-In;Kim, Seo-Ryong;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.828-837
    • /
    • 2006
  • Geotextiles consist of three major types of geosynthetic material (woven, non-woven and composite) and the functions of geotextiles are separation, reinforcement, filtration, drainage and as a moisture barrier. Although the many research scholar and engineer developed and established the design criteria and construction methodology, sustainable research still needed for optimum design methodology to the complicate field conditions. In this study, in-situ rainfall test performed to develop suitable filter system for sea dyke upper slope filter layer. In-situ rainfall test conducted for seven different filter system and measured the infiltration flux and pore pressure at various filter layer. Based on the test results, the double layered geotextile filter and sand transition system is most suitable for sea dyke upper filter layer because which system is effective for drainage of infiltration flow and minimize the deformation of sea dyke cover stone.

  • PDF

Removal Property of Taste and Odor Causing Material in Pulsator Clarifier (맥동식 침전지에서 맛·냄새 유발물질 제거 특성)

  • Jeong, Il Yong;Cha, Min Whan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.104-109
    • /
    • 2011
  • The removal efficiencies of 2-methylisoborneol (MIB) and geosmin were investigated to reveal removal characteristics of typical organic compounds causing disagreeable taste and odor at the conventional water treatment plant installed with pulsator clarifier patented by the French company $Degr{\acute{e}}mont$. The injection rate of Powdered Activated Carbon (PAC) into water was changed step wisely as we conducted jar tests in the laboratory and water treatment in the actual plant. 2-MIB concentration decreased linearly while geosmin did exponentially along with the injection rate of PAC at our jar tests. The removal efficiency of geosmin by PAC injection was considerably higher than that of 2-MIB. In the real pulsator clarifier, 2-MIB concentration started decreasing as the injection rate reached up to 10 mg/L of PAC. On the other hand, the concentration of geosmin in water decreased proportional to the injection rate of PAC. In the sand filtration, removal efficiencies of 2-MIB and geosmin on July were much higher than those on March. It was carefully suggested beforehand and found afterwards that general microorganisms notably existed in the sand filter with no chlorine in filter influent and backwash water and the sand filter biologically activated removed much more odor compounds. It was considered as the reason why the removal efficiency of 2-MIB and geosmin was increased. The microbial activity maybe increased in summer with water temperature rising and low filtration rate possibly increased contact time between odor compounds and general microorganisms.

Properties of Hand-made Clay Balls used as a Novel Filter Media

  • Rajapakse, J.P.;Madabhushi, G.;Fenner, R.;Gallage, C.
    • Geomechanics and Engineering
    • /
    • v.4 no.4
    • /
    • pp.281-294
    • /
    • 2012
  • Filtration using granular media such as quarried sand, anthracite and granular activated carbon is a well-known technique used in both water and wastewater treatment. A relatively new pre-filtration method called pebble matrix filtration (PMF) technology has been proved effective in treating high turbidity water during heavy rain periods that occur in many parts of the world. Sand and pebbles are the principal filter media used in PMF laboratory and pilot field trials conducted in the UK, Papua New Guinea and Serbia. However during first full-scale trials at a water treatment plant in Sri Lanka in 2008, problems were encountered in sourcing the required uniform size and shape of pebbles due to cost, scarcity and Government regulations on pebble dredging. As an alternative to pebbles, hand-made clay pebbles (balls) were fired in a kiln and their performance evaluated for the sustainability of the PMF system. These clay balls within a filter bed are subjected to stresses due to self-weight and overburden, therefore, it is important that clay balls should be able to withstand these stresses in water saturated conditions. In this paper, experimentally determined physical properties including compression failure load (Uniaxial Compressive Strength) and tensile strength at failure (theoretical) of hand-made clay balls are described. Hand-made clay balls fired between the kiln temperatures of $875^{\circ}C$ to $960^{\circ}C$ gave failure loads of between 3.0 kN and 7.1 kN. In another test when clay balls were fired to $1250^{\circ}C$ the failure load was 35.0 kN compared to natural Scottish cobbles with an average failure load of 29.5 kN. The uniaxial compressive strength of clay balls obtained by experiment has been presented in terms of the tensile yield stress of clay balls. Based on the effective stress principle in soil mechanics, a method for the estimation of maximum theoretical load on clay balls used as filter media is proposed and compared with experimental failure loads.

A Study on the Development and Improvement of Simple Piped Water Supply System in Rural Area of Korea (농촌지역 간이상수도시설 개발 및 개선에 관한 연구)

  • Chung, Yong;Koo, Ja-Kon;Kim, Myung-Ho;Yun, Suk-Woo;Kim, In-Sook
    • Journal of agricultural medicine and community health
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 1988
  • It is very important to supply safe drinking water for rural area not only a prevention of entric diseases but also a promotion of health life. It is estimated that 6,981,000 rural inhabitants were covered by the simple piped water supply system at the end of 1987 in Korea. The programme for improvement of water supply system in rural villages was initiated by the government since 1967. But most of these systems have been operated carelessly by the hands of villagers who have no proper knowledge and experience. Since most of water sources were located nearby farmland, there might be a possibility that the sources could be contaminated by pesticides and fertilizers. For this reason, it is recommended to take underground water as a water source rather than surface water such as a pond or streamwater in rural areas. However, the system is supplied from the surface water, its water quality can be improved by using of simple sand filter and simple chlorinator inexpensively. On the basis of an on-site study, conducted during 1986-87, in San-Buk Village, Keum-Sa-Myon, Yeju-Gun, Kyong-Gi-Do, the new simple piped water supply system was designed by the Institute for Environmental Research, Yonsei University, and constructed by the villagers themselves in September 1987. This simple system which is protected by metal fences consists of three main parts, pump house, vertical sand filter and water tank. The pumped water from underground flows into the upper part of the sand filter, through the sand, and out the water tank which is connected to the bottom of vertical filter. And the simple plastic-bottle chlorinator was installed in the water tank for chlorination. The water quality was remarkably improved after completion of construction. The total bacterial count was not detected from the tap water in households distributed by this simple piped water supply system. The construction cost of this system which was connected 34 households in San-Buk Village, was 4,851,000 won (approximately 6,020 U.S. dollars : 1$=805.8 won) in 1987,77% of expenses was supported by the Community Development Foundation in Korea. This case study for simple piped water supply projects will be applicable to other programme for improvement of water supply system in rural areas of Korea, and other developing countries.

  • PDF