• Title/Summary/Keyword: Sand filter

Search Result 188, Processing Time 0.028 seconds

Evaluation of Influence Factors for Determination of Proper Backwashing Time of Biological Activated Carbon (BAC) Process in Drinking Water Treatment Process (정수처리용 활성탄 공정의 적정 역세척 시점 선정을 위한 영향인자들 평가)

  • Kim, Sang-Goo;Park, Hong-Gi;Son, Hee-Jong;Yoom, Hoon-Sik;Ryu, Dong-Choon
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1551-1558
    • /
    • 2015
  • In Korea, many drinking water treatment plants (DWTPs) have introduced and are going to introduce biological activated carbon (BAC) process to treated dissolved organic matter (DOM) in water which are difficult to control by conventional water treatment processes. Even though more decade have passed since introduced BAC in Korea, most of BAC operating method was followed to the modified sand filter operating manuals. In case of BAC backwashing, many DWTPs set the periods of backwashing about 3~5 days. In this study, we have collected data to set the proper BAC backwashing periods from both pilot-plant and real DWTPs. We had measured heterotrophic plate count (HPC), turbidity, water temperature, dissolved organic carbon (DOC) and headloss from just after backwashing to the next backwashing time for two years. Considering water quality factors, the BAC run time from backwashing to the next backwashing could extend more 30 days without water quality deterioration if the head loss do not reach the limited level which depends on each BAC facilities' condition. It means the BAC treated water could be saved in the proportion of extended the backwashing period to the existing backwashing period.

Removal of discoloration materials by water mains cleaning on water distribution pipes (관 세척에 따른 색도성 물질의 제거 효과)

  • Lee, Ho-Min;Choi, Tae-Ho;Yun, Hyun-Woo;Kim, Dong-Hong;Bae, Cheol-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.267-276
    • /
    • 2020
  • In this study, air scouring cleaning was selected and applied among 5 small blocks (S1~S5) in domestic S cities to analyze the cleaning effect of particles causing discoloration. In order to identify the cleaning effect, 10 locations were selected as water quality investigation point, such as the stagnant or water mains ends. Removal of solids, variation of particle components, weight and concentration were analyzed. And the level of the cleanness of the surface inside water mains using endoscope was investigated. As a result of analysis, the solids discharged after cleaning were mainly sand and gravel, pieces related to pipe materials, and corrosion products. As a result of analyzing the concentrated particles of the filter before and after cleaning, it was found that the change in discoloration on the filter was large. In addition, as a result of comparing the weight and the concentration of the particles, it was found that the particles causing discoloration were significantly removed after cleaning. From the results of the endoscopy, it was confirmed that most of the precipitated and accumulated dark yellow discoloration matters inside water mains were removed through cleaning. Therefore, it seems that the particles causing discoloration in water decreased after cleaning. Therefore, it is expected that, if properly cleaning was applied, matters that cause discoloration can be removed from the water mains, and customer's complaints can also be reduced through water quality improvement.

Characteristics of Health Masks Certified by the Ministry of Food and Drug Safety (식품의약품안전처에서 허가된 보건용 마스크의 특성 분석)

  • Ham, Seunghon;Choi, Won-Jun;Lee, Wanhyung;Kang, Seong-Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.134-141
    • /
    • 2019
  • Objectives: The study aimed to investigate the characteristics of health masks and to suggest the proper selection and use of protecting the respiratory system from particulate matters. Methods: The National Standard of masks promulgated by the Ministry of Food and Drug Safety (MFDS) and the Ministry of Employment and Labor (MOEL) were reviewed. The raw data of certified health masks were obtained from the MFDS database. Descriptive statistical analysis was performed. Results: Overall, 543 masks were certified by MFDS as of March 2019. Numbers of certified masks as KF80 (Korea Filter), KF94 and KF99 were 257 (47.3%), 281 (51.8%), and 5 (0.9%), respectively. Names of health masks, which were yellow sand, communicable diseases, health or its combination, were diverse that made customers be confused in selection. Health masks were also classified by particulate size, however, detailed information was not available. Conclusions: We investigated the status of health mask certification in Korea. Appropriate information on KF grade of health masks is required for customers to use them properly. MFDS should update the certification system of health masks periodically.

Effect of Environmental Variables on Changes in Macrobenthic Communities in the Coastal Area of Inchon, Korea (인천연안 대형저서동물 군집 변동에 미치는 환경요인의 영향)

  • YU Ok Hwan;KOH Byoung-Seol;LEE Hyung-Gon;LEE Jae-Hac
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.5
    • /
    • pp.423-432
    • /
    • 2004
  • In coastal area of Inchon, dredging and the disposal of dredged material for sea-wall construction and reclamation have increased in recent years. These activities may impact the benthic environment and result in changes in benthic communities, but little information is available on the extent and direction of these changes. We investigated whether there have been changes in the dominant macrobenthic species and benthic community over the last decade, and explored the relationship between environmental variables and spatial patterns of macrobenthic community structure. We sampled macrobenthos and recorded environmental variables in the coastal habitats of Inchon in March and June 2004. In total, 212 macrobenthic species were recorded during this study, predominately crustaceans $(34{\%})$, mollusks $(32{\%})$ and polychaetes $(21{\%})$. The mean density of macrobenthos was $1,393\;ind./m^{2}$.The most abundant species was Amphioplus japonicus $(20.5{\%})$, followed by Heteromastus filiformis $(14.4{\%})$, Theora fragilis $(8.2{\%})$ and Ampharete sp. $(4.0{\%})$. Over the past decade the dominant macrobenthic species in this area shifted. Multivariate analysis (multidimensional scaling) revealed significant differences in community structure among three regions: the middle part of the sampling area (B), site 8 (C) and other sites (A). Mean density varied significantly among the three regions, but no differences in the number of species and diversity (H') were observed. The distribution of the macrobenthic community was affected by environmental variables such as percentage sand content and sediment kurtosis. Species that were important in different areas included A. japonicus in region A, Raeta puchella in region B and T. fragilis in region C. The important species in regions B and C were filter-feeding bivalves, and the abundance of these species may be related to the increase in percentage sand content. We suggest that the sediment composition (percentage sand content) may be an important factor in determining the dominant species and structure of the macrobenthic communities in coastal Inchon. Long-term monitoring programs are necessary to understand ongoing changes in the benthic communities of this area.

Treatability Study on the Remediation Groundwater Contaminated by TPH Cr6+ : Lab-Scale Experiment (TPH와 6가 크롬으로 오염된 지하수 처리를 위한 실내 실험)

  • Lee, Gyu-Beom;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.332-345
    • /
    • 2019
  • The purpose of the study is to evaluate the treatability of contaminated groundwater with TPH and (or) $Cr^{6+}$. Laboratory scale tests were performed for oil/water separation, dissolved air flotation (DAF), coagulation and precipitation, and filtration with sand and activated carbon respectively. Two times of oil/water separation tests for total 40 minutes of separation or separating time shows 90.2 % of TPH removal rate. In case of DAF test for high TPH sample, the TPH removal rates were not varied significantly by the variation of microbubble size. However, tests for low TPH samples show that TPH removal rate increases as microbubbles are smaller. When coagulant was added to sample for DAF test, TPH removal rate was increased 12.3 %. SS removal rate by DAF was 97.9 % at $16-40{\mu}m$ and it was increased as the size of microbubble is reduced. Tests for coagulation and precipitation were performed to evaluate the removal of $Cr^{6+}$ in groundwater. The increase of $FeSO_4$ dosage increased $Cr^{6+}$ removal rate in the coagulation and precipitation process. As the amount of activated carbon in the filter media increased TPH removal rate in the filtration process. SS removal rate by the filtration was 96.7 % similar to the results of DAF process tests. The filtration process treats TPH and SS. Best design parameters are determined as the size of sand is $425-850{\mu}m$ and the ratio of activated carbon and sand is 50:50.

A Study on the Applicability of Copper Slag as Drainage Material (산업폐기물인 동슬래그의 배수재로서의 활용에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.65-72
    • /
    • 2004
  • Within a country, owing to the restriction of aggregate which have been supplied to construction sites, applicability of byproducts such as the copper slag is expected to be more reasonable. In this study, on the basis of characteristics, grain distribution and environmental stability of copper slag, its engineering application was estimated as the vertical and horizontal drainage material. As a results of laboratory tests, it was shown that the permeability of the copper slag was similar to that of sands under vertical drainage condition. In addition, the copper slag showed higher critical hydraulic gradient than that of sand under upward vertical flow state. The copper slag has potential safety against piping and it that the copper slag is suitable for drainage and filter material.

  • PDF

A Study on the Drinking Water Treatment by Precoat Filtration and Activated Carbon Adsorption Process (규조토여과 및 활성탄흡착 공정을 이용한 용수처리에 관한 연구)

  • Shin Dae-Yewn;Kim Ji-Yeoul;Ji Sung-Nam
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.402-409
    • /
    • 2004
  • I performed the research about the drinking water treatment by precoat filtration and activated carbon adsorption process in the D water treatment plant at Gwangju. D water treatment plant inlet water is supplied from Juam lake in Jeollanamdo. The results are as follows; 1. Element disk used in this experiment are R(pore size $10{\mu}m$), B(pore size $20{\mu}m$). And diatomaceous earth are A(cake pore size $3.5{\mu}m$), B(cake pore size $7{\mu}m$) and C(cake pore size $17{\mu}m$) 2. Filtrate of precoat filter during 30 min are B-C 10.2 > BB 5.7 > R-A 5.4 ($m^3/m^2$). 3. The water quality through B-C+AC and R-A+AC are DOC 1.76 mg/1, 1.288 m/l respectively. 4. total THMs produced by chlorination are $84.2{\mu}g/l$(B-C+AC), $66.11{\mu}g/l$ (R-A+AC), $97{\mu}g/l$ (rapid sand filtration water) respectively. 5. The R-A+AC and B-C+AC process can be substitute of CWTS.

Studie8 on Long-Term Performance Evaluation of Geotextiles -for Filter and Drainage- (필터 및 배수용 토목섬유의 장기적 성능 평가에 관한 연구)

  • 권우남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.130-139
    • /
    • 1993
  • In order to evaluate the long-term permeability performace of the geotextiles, for five different combination of geotextiles and soils the long-term column test method The results obtained are as follows; 1.The gradient range of the initial stage of the long-term permeability curves varied with respect to the soil types, while that of the final stage varied according to the interaction of the soil/geotextile system. 2.The time required for a given soil/geotextile system to reach a interactive stable stage was measured ahout 100 hours for the standard sand and 150 to 600 hours for the silty content soils, respectively. 3.There were no differences between the plain woven geotextile and the non-geotextile in the long-term permeability performance. 4.As the silt content increased, the long-term performance of the geotextiles decreased, and the limiting silt content was about 15%. 5.The thickness and area density of the geotextiles did not influence on the variation of the seepage quantities. 6.The ayerage slope and the transition time of the long-time flow curve were calculated. 7.In order to evaluate the mechanism of soil/geotextile system more perfectly, the gradient ratio test or the hydraulic conductivity test is required.

  • PDF

Isolation of bacteria capable of removing 2-methylisoborneol and effect of cometabolism carbon on biodegradation

  • Du, Kang;Liu, Jian;Zhou, Beihai;Yuan, Rongfang
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.256-264
    • /
    • 2016
  • 2-Methylisoborneol (2-MIB) is one of typical odorants in potable water sources, which is hardly removed by conventional water treatment process. In this study, three strains capable of removing 2-MIB singly from drinking water were isolated from activated carbon of sand filter. They were identified to be Shinella zoogloeoides, Bacillus idriensis and Chitinophagaceae bacterium based on 16S rRNA gene sequence analysis. In mineral salts medium without external carbon source, removal efficiencies of $20{\mu}g/L$ 2-MIB in three days were 23.3%, 32.9% and 17.0% for Shinella zoogloeoides, Bacillus idriensis and Chitinophagaceae bacterium, respectively. The biodegradation of 2-MIB was significantly improved with the presence of cometabolism carbon(glycerol, glucose, etc.). In the period of 20 days, Bacillus idriensis can remove 2 mg/L MIB to $368.2{\mu}g/L$ and $315.4{\mu}g/L$ in mineral salts medium without and with glycerol respectively. The removal of 2-MIB by Bacillus idriensis was from 2 mg/L to $958.4{\mu}g/L$ in Xiba river samples on 15 days.

Design Optimization of an Ozone Contactor Using Ozone Contactor Model (OCM) Software

  • Kim, Doo-Il;Lee, Chae-Young;Joe, Woo-Hyeun;Lee, Seock-Heon
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.244-249
    • /
    • 2009
  • Designing an ozone contactor is complicated because the residual ozone, log C. parvum inactivation, and bromate formation should be optimized with fluctuating water quality. OCM software was developed to assist a plant designer or an operator to fulfill the sophisticated optimization required in the design or operation of a new or an existing plant. In this article, numerical simulations were carried out using the OCM software for the design of a new ozone contactor under diverse design factors (i.e., three pHs, three temperatures, low and high dispersion numbers, and four and ten cells with complete mixing) with kinetic parameters obtained from the sand-filter effluent of a water treatment plant treating water from the Paldang impoundment. The results of the simulation suggested that a high residual ozone concentration at low pH and low temperature would be challenging, and PFR-like hydrodynamics could lower the residual ozone concentration. The inactivation of C. parvum oocysts increased at a lower pH. A lower dispersion number and more cell division increased the inactivation efficiency. Bromate was instantaneously formed during the initial ozonation stage. The effluent concentration was much lower than the regulatory levels imposed by the USEPA because of the low bromide level in raw water.