References
- Lior G, Jaap R. 2-Methylisoborneol and geosmin uptake by organic sludge derived from a recirculating aquaculture system. Water Res. 2009;43:474-480. https://doi.org/10.1016/j.watres.2008.10.018
- Westerhoff P, Rodriguez-Hernandez M, Baker L, Sommerfeld M. Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Water Res. 2005;39:4899-4912. https://doi.org/10.1016/j.watres.2005.06.038
- Cecilie K, Mette HN, Bjarne WS, Warnecke F, Nielsen JL, Jorgensen NOG. Abundance of actinobacteria and production of geosmin and 2-methylisoborneol in Danish streams and fish ponds. FEMS Microbiol. Ecol. 2005;52:265-278. https://doi.org/10.1016/j.femsec.2004.11.015
- Ismail S. Production of 2-methylisoborneol by Streptomyces violaceusniger and its transformation by selected species of Pseudomonas. J. Basic Microbiol. 2005;45:236-242. https://doi.org/10.1002/jobm.200410495
- Sagehashi M, Shiraishi K, Fujita H, Fujii T, Sakoda A. Adsorptive ozonation of 2-methylisoborneol in natural water with preventing bromate formation. Water Res. 2005;39:3900-3908. https://doi.org/10.1016/j.watres.2005.06.032
- Ho L, Hoefel D, Bock F, Saint CP, Newcombe G. Biodegradation rates of 2-methylisoborneol (MIB) and geosmin through sand filters and in bioreactors. Chemosphere 2007;66:2210-2218. https://doi.org/10.1016/j.chemosphere.2006.08.016
- Kristin K, Hilmar B, Eckhard W. Photoinitiated oxidation of geosmin and 2-methylisoborneol by irradiation with 254 nm and 185 nm UV light. Water Res. 2009;43:2224-2232. https://doi.org/10.1016/j.watres.2009.02.015
- Lalezary S, Pirbazari M, McGuire MJ. Oxidation of five earthymusty taste and odor compounds. J. Am. Water Works Ass. 1986;78:62-69.
- Tanaka A, Oritani T, Uehara F, et al. Biodegradation of a musty odour component, 2-methylisoborneol. Water Res. 1996;30:759-761. https://doi.org/10.1016/0043-1354(95)00223-5
- Ho L, Newcombe G, Croue JP. Influence of the character of NOM on the ozonation of MIB and geosmin. Water Res. 2002;36:511-518. https://doi.org/10.1016/S0043-1354(01)00253-6
- Izaguirre G, Wolfe RL, Means EG. Degradation of 2-methylisoborneol by aquatic bacteria. Appl. Environ. Microb. 1988;54:2424-2431.
- Chance VL, Henry CA, Angela SL. Isolation and characterization of a bacterium capable of removing taste-and odor-causing 2-methylisoborneol from water. Water Res. 2004;38:4135-4142. https://doi.org/10.1016/j.watres.2004.08.014
- Richard WE, Peter S. Biotransformations of 2-methylisoborneol by camphor-degrading bacteria. App. Environ. Microb. 2009;75:583-588. https://doi.org/10.1128/AEM.02126-08
- Sumitomo H. Biodegradation of 2-methylisoborneol by gravel sand filtration. Water Sci. Technol. 1992;25:191-198.
- Yagi M, Nakashima S, Muramoto S. Biological degradation of musty odor compounds, 2-methylisoborneol and geosmin, in a bio-activated carbon filter. Water Sci. Technol. 1988;20:255.
- Izaguirre G, Wolfe RL, Means EG. Bacterial degradation of 2-methylisoborneol. Water Sci. Technol. 1988;20:205-210.
- Schumann R, Pendleton P. Dehydration products of 2-methylisoborneol. Water Res. 1997;31:1243-1246. https://doi.org/10.1016/S0043-1354(96)00330-2
- Yagi M, Nakashima S, Muramoto S. Biological degradation of musty odour compounds, 2-methylisoborneol and geosmin, in a bioactivated carbon filter. Water Sci. Technol. 1988;20:255-260.
- Sumitomo H. Odor decomposition by the yeast Candida. Water Sci. Technol. 1988;20:157-162.
- Zhou BH, Wang J, Cai MM, Zhu L, Song WJ. Isolation of a bacterium capable of removing 2-methylisoborneol from water. J. Univ. Sci. Technol. B. 2007;29:227-230.
- Yuan RF, Zhou BH, Shi CH, Yu L, Zhang C, Gu J. Biodegradation of 2-methylisoborneol by bacteria enriched from biological activated carbon. Front. Environ. Sci. Eng. 2012;6:701-710. https://doi.org/10.1007/s11783-011-0367-6
- Oikawa E, Shimizu A, Ishibashi Y. 2-Methylisoborneol degradation by the CAM operon from Pseudomonas putida PpG1. Water Sci. Technol. 1995;31:79-86.
- Zhong XH, Zhou LH, Yu SB, Xu YH, Qu YB, Su GN.Detection of 2-MIB and GSM in water by HS-SPME-GC-MS. J. Environ. Hyg. 2015;5:279-282.
- Satoshi H, Hideyuki T, Kazunori N, Kamagata Y. Crenotalea thermophila gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a hot spring. Int. J. Syst. Evol. Micr. 2014;64:1359-1364. https://doi.org/10.1099/ijs.0.058594-0
- Xie S, Liu JX, Li L, Qiao CL. Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J. Environ. Sci. 2009;21:76-82. https://doi.org/10.1016/S1001-0742(09)60014-0
- Wang SJ, Loh KC, Shao SC. Prediction of critical cell growth behavior of Pseudomonas putida to maximize the cometabolism of 4-chlorophenol with phenol and sodium glutamate as carbon sources. Enzyme Microb. Technol. 2003;32:422-430. https://doi.org/10.1016/S0141-0229(02)00315-0
Cited by
- sp. and its application in biological aerated filter systems vol.53, pp.4, 2018, https://doi.org/10.1080/10934529.2017.1401385
- Impact of UV irradiation at full scale on bacterial communities in drinking water vol.3, pp.1, 2016, https://doi.org/10.1038/s41545-020-0057-7