• 제목/요약/키워드: Sand blast

검색결과 118건 처리시간 0.02초

고로슬래그 콘크리트의 투수특성에 관한 실험적 연구 (An Experimental Study on Permeability Characteristics of Blast Furnace Slag Concrete)

  • 백신원;오대영
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.9-12
    • /
    • 2013
  • The pavement is generally used on the highways, local loads, roads for bicycle riding and neighborhood living facility such as parking lot, plaza, park and sports facilities. However, the pavement material that is usually used on the most of roads is impermeable asphalt-concrete and cement-concrete. If the pavement material is impermeable, many problems can be happened on the drainage facilities in the rainy season. Additionally, a lot of rainwater on the pavement surface cannot permeate to the underground and flows to the sewage ditch, stream and river, etc. If a lot of rainwater flows at once, the floods can be out along the streams and rivers. So, underground water can be exhausted. Micro organisms cannot live in the underground. Recently, many studies has been conducted to exploit the permeable concrete that has high performance permeability. However, it is required to develop the permeable concrete which has high strength and durability. In this study, permeable and strength tests were performed to investigate the permeable characteristics of porous concrete according to fine aggregate content and substitution ratio of blast furnace slag. In this test, crushed stones with 10~20 mm and sand with 5~10 mm were used as a coarse aggregate and a fine aggregate respectively. The substitution ratio of blast furnace slag to cement weight is 0 %, 15 %, and 30 %. The ratio of fine aggregate to total aggregate is 0 %, 18 %, and 35 %. As a result, permeability coefficient was decreased according to fine aggregate ratio of total aggregate. Compressive strength was also decreased according to substitution ratio of blast furnace slag.

Rheological properties of self consolidating concrete with various mineral admixtures

  • Bauchkar, Sunil D.;Chore, H.S.
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.1-13
    • /
    • 2014
  • This paper reports an experimental study into the rheological behaviour of self consolidating concrete (SCC). The investigation aimed at quantifying the impact of the varying amounts of mineral admixtures on the rheology of SCC containing natural sand. Apart from the ordinary Portland cement (OPC), the cementitious materials such as fly ash (FA), ground granulated blast furnace slag (GGBS) and micro-silica (MS) in conjunction with the mineral admixtures were used in different percentages keeping the mix paste volume and flow of concrete constant at higher atmospheric tempterature ($30^{\circ}$ to $40^{\circ}C$). The rheological properties of SCC were investigated using an ICAR rheometer with a four-blade vane. The rheological properties of self-consolidating concrete (SCC) containing different mineral admixtures (MA) were investigated using an ICAR rheometer. The mineral admixtures were fly ash (FA), ground granulated blast furnace slag (GGBS), and micro silica (MS). The results obtained using traditional workability results are compared with those obtained using ICAR rheometer. The instrument ICAR (International Center for Aggregate Research) rheometer employed in the present study for evaluating the rhelogical behaviour of the SCC is found to detect systematic changes in workability, cementitious materials, successfully. It can be concluded that the rheology and the slump flow tests can be concurrently used for predicting the flow behaviours of SCC made with different cementitious materials.

폐내화물 및 탈황석고의 치환율 변화에 따른 3종 고로슬래그 시멘트와 순환잔골재를 사용하는 모르타르의 품질향상 (Enhancement in the quality of mortar which uses uses 3-type blast-furnace slag cement and circulated fine aggregate, according to replacement ratio changes of waste refractories and desulfurized plaster)

  • 이재진;이제현;백철;김민상;윤원근;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.56-57
    • /
    • 2016
  • Recently amongst Korea's construction companies there has been heightened interest in environment load reduction and resource recycling. As a result, the construction industry is examining recycled materials alternative to cement and blast-furnace slag (BS henceforth) cement, such as waste refractories and desulfurized plaster. This study analyzes the liquidity and intensity characteristics of mortar according to changes in replacement ratios of waste refractories and desulfurized plaster, used as industry by-products in mortar environments that use BS 3-type cements and circulated fine aggregate. As a result, the greater the increase in replacement ratios of desulfurized plaster, the greater the increase in liquidity and air quantity, as well as compression strength.

  • PDF

Effects of unconfined blast on strategic structures and its protective measures

  • Choubey, Bishwajeet;Dutta, Sekhar C.;Hussain, Md. Ahsaan
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.167-180
    • /
    • 2022
  • A strategic structure when exposed to direct hit of conventional bomb/projectile are severely damaged because of large amounts of energy released by the impact and penetration of bomb. When massive concrete slabs suffer a direct hit, the energy released during impact and penetration process are able to easily break up large mass of concrete. When over stressed under such impact of bombs, the concrete structure fails showing brittle behavioural nature. This paper is intended to study and suggest the protective measures for structures used for strategic application by adopting a means to dissipate the large quantum of energy released. To quantitatively evaluate the force, displacement and energy in such scenario, a fine numerical model of the proposed layered structure of different combinations was built in ANSYS programme in which tri-nitrotoluene (TNT) explosive was detonated at penetration depth calculated for GP1000 Lbs bomb. The distinct blast mitigation effect of the proposed structure was demonstrated by adopting various layers/barriers created as protective measures for the strategic structure. The calculated result shows that the blast effect on the structure is potentially reduced due to provision of buster slab with sand cushioning provided as protective measure to the main structure. This concept of layered protective measures may be adopted for safeguarding strategic structures such as Domes, Tunnels and Underground Structures.

고로슬래그미분말 콘크리트의 초기재령특성과 중성화에 관한 연구 (A Study on Characteristics of Early Age Pore-structure and Carbonation of Ground Granulated Blast Furnace Slag Concrete)

  • 변근주;박성준;하주형;송하원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.107-110
    • /
    • 1999
  • The objective of this study is to obtain characteristics of early age pore-structure and carbonation of concrete using ground granulated blast furnace slag (GGBFS). The durability of GGBFS concrete should be evaluated for wide use of the GGBFS. As for that evaluation, an analysis on early age pore-structure characteristics of GGBFS concrete are very important, Carbonation depths of GGBFS concrete, which are known to be larger than that of OPC, are different according to replacement ratios and fineness of slag. Because sea sand as fine aggregate is much used recently, it is also necessary to analyze characteristics of carbonation of GGBFS concrete. In this study, The micro-pore structure formation characteristics of GGBFS concrete are obtained through the test of GGBFS mortars with different fineness and replacement ratio of GGBFS. The carbonation of GGBFS concrete is also investigated by acclerated carbonation test for early age GGBFS concrete.

  • PDF

잔골재 치환율별 저탄소 무기결합재를 사용한 모르타르의 유동 및 강도 특성에 관한 실험적 연구 (An Experimental Study on the Flowing and Strength Properties of Mortar using Low Carbon Inorganic Binder by Sand Replacement Ratio)

  • 배상우;이윤성;이강필;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.63-64
    • /
    • 2011
  • This study is about the mortar in which fine aggregate is substituted by low-carbon eco-friendly inorganic composite prepared by addition of alkali accelerator in industrial by-products such as blast furnace slag, red mud and silica fume as a replacement for cement. Results of experiments on flow and strength properties in mortar of inorganic composite according to replacement rate of fine aggregate showed that amount of air and table flow decreased as replacement rate of fine aggregate about inorganic composite got higher. Also, it's shown that the compressive strength was the highest at replacement rate 50% of fine aggregate about inorganic composite.

  • PDF

제강슬래그 잔골재 사용 모르타르의 역학적 특성에 대한 고찰 (A Study on the Mechanical Properties of Mortar Using Steen Slag Fine Aggregate)

  • 문한영;유정훈;박영훈;강정용;정문철;송준혁
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.322-325
    • /
    • 2003
  • Recently, as quality river aggregates like sands and gravels become scarce, use of crushed stones and sands, seashore sands, and seashore gravels is increasing abruptly. And, aggregates recycled from slags and waste concretes are used. However, since the converter slag easily expands and breaks due to free lime, differently from the blast-furnace slag, it is not suitable for use as concrete aggregates. Since the atomized steel slag aggregate has slippery surface and spherical shape, the mortar flowing characteristics improved as the atomized steel slag content increases, without regard to the aggregates coarseness and water/cement ratio. The flow characteristics loss rate of the mortar manufactured from steel slag aggregates was similar to that of the mortar manufactured from washed sand only. The compact strength of the mortar manufactured from coarse PS Ball were larger than that manufactured from washing sand only.

  • PDF

페로니켈 슬래그 잔골재의 입도 변화에 따른 모르타르의 유동성 및 압축강도 평가 (Evaluation of Fluidity and Compressive Strength of Mortar by Grading Variation of Ferro-Nickel Slag Sand)

  • 김도빈;민상현;김정현;반준모;최세진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.206-207
    • /
    • 2017
  • We investigated the fluidity and compressive strength properties of mortar by Grading Variation of Ferro-Nickel Slag Sand in order to improve the utilization of ferro-nickel which is the by-product produced by making stainless steel, in the construction industry.

  • PDF

Flexural studies on reinforced geopolymer concrete beams under pure bending

  • Sreenivasulu, C.;Jawahar, J. Guru;Sashidhar, C.
    • Advances in concrete construction
    • /
    • 제8권1호
    • /
    • pp.33-37
    • /
    • 2019
  • The present investigation is mainly focused on studying the flexural behavior of reinforced geopolymer concrete (RGPC) beams under pure bending. In this study, copper slag (CS) was used as a partial replacement of fine aggregate. Sand and CS were blended in different proportions (100:0, 80:20, 60:40 and 40:60) (sand:CS) by weight. Fly ash and ground granulated blast furnace slag (GGBS) were used as binders and combination of sodium hydroxide (8M) and sodium silicate solution were used for activating the binders. The reinforcement of RGPC beam was designed as per guidelines given in the IS 456-2000 and tested under pure bending (two-point loading) after 28 days of ambient curing. After conducting two point load test the flexural parameters viz., moment carrying capacity, ultimate load, service load, cracking moment, cracking load, crack pattern and ultimate deflection were studied. From the results, it is concluded that RGPC beams have shown better performance up to 60% of CS replacement.

고강도콘크리트의 유동성 손실에 영향을 미치는 요인에 대한 실험적 연구 (An Experimental Study on the Factors Influencing on the Slump Loss of High Strength Concrete)

  • 문한영;김기형;문대중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.94-99
    • /
    • 1992
  • In this study , some factors such as mix proportion, type and dosage of high range water reducing admixture(HRWR) and natural pozzolanas influencing on the slump loss of high strength concrete(H.S.C) using HRWR were investigated for reducing the slump loss. The acquired results indicated that the slump loss of H.S.C was affected according to cement content, sand percentage and type and dosage of HRWR and fly ash was superior to ground granulated blast furance slag in reducing the slump loss of H.S.C.

  • PDF