• Title/Summary/Keyword: Sand bars

Search Result 77, Processing Time 0.019 seconds

A Study of Blasting Demolition by Scaled Model Test and PEC2D Analysis (축소모형실험 및 PFC2D해석에 따른 발파해체 거동분석)

  • 채희문;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.54-68
    • /
    • 2004
  • In this study, scaled model tests were performed on blasting demolition of reinforced concrete structures and the experimental results were analyzed in comparison with the results of numerical analysis. The tests were designed to induce a progressive collapse, and physical properties of the scaled model were determined using scale factors obtained ken dimension analysis. The scaled model structure was made of a mixture of plaster, sand and water at the ratio determined to yield the best scaled-down strength. Lead wire was used as a substitute for reinforcing bars. The scaled length was at the ratio of 1/10. Selecting the material and scaled factors was aimed at obtaining appropriately scaled-down strength. PFC2D (Particle Flow Code 2-Dimension) employing DEM (Distinct Element Method) was used for the numerical analysis. Blasting demolition of scaled 3-D plain concrete laymen structure was filmed and compared to results of numerical simulation. Despite the limits of 2-D simulation the resulting demolition behaviors were similar to each other. Based on the above experimental results in combination with bending test results of RC beam, numerical analysis was carried out to determine the blasting sequence and delay times. Scaled model test of RC structure resulted in remarkably similar collapse with the numerical results up to 900㎳ (mili-second).

Distribution of Geomorphological Landscape Resources of Goryeong-gun, and Its Application Plan (고령군 지형경관자원의 분포와 활용방안)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.4
    • /
    • pp.279-289
    • /
    • 2008
  • The purpose of this paper is to search for geomorphological landscape resources of Goryeong-gun, to provide fundamental data for their management through mapping their distribution, and to present their conservation and application plan. The results are as follow: Firstly, geomorphological landscape resources in mountain area are Misungsan and Jusan mountain of Goryeong-up, Sangbiri valley of Deoggok-myeon, and isolated hill of Gaejin-myeon. Secondly, geomorphological landscape resources in riparian area are natural wetlands such as Jinchonneup of Bu-ri Gaejin-myeon, Hochonneup and Dalseongseupji of Hochon-ri Dasan-myeon, Bongsanneup of Bongsan-ri Ugok- myeon; artificial wetlands following the construction of weir such as riparian wetland of Oe-ri Goryeong-up and Banun-ri Gaejin-myeon; meander core and abandoned channel of Banun-ri Gaejin -myeon, river cliffs such as Naegok-ri Goryeong-up and Weolo-ri Ugok-myeon; sand bars and braided channel of Yajeong-ri Ugok-myeon. Thirdly, Jinchonneup swamp area of Bu-ri Gaejin-myeon have characteristics of typical floodplain landform, and its conservation conditions is relatively satisfactory, and its accessibility to metropolis is great, so it is a good place to construct eco-park. And construction of inquiry learning place at Banun-ri Gaejin-myeon will increase the opportunity to observe environmental changes following incised meander cutoff and ecological affirmative functions of a weir.

  • PDF

The Research on the effect of School Safety Management System on Accident in School -Based on study of high schools in Seoul- (학교사고에 영향을 미치는 학교안전 관리구조 실태 조사 -서울시 일부 고등학생을 대상으로-)

  • 박지은;이명선
    • Korean Journal of Health Education and Promotion
    • /
    • v.19 no.2
    • /
    • pp.57-72
    • /
    • 2002
  • Students spend most of their time in school. Schools have the possibility of unanticipated accidents, however, and the rate of accidents in schools is increasing. The purpose of this study were to understand the accidents that arise in schools as well as the school safety management system and by analyzing affects that school safety management system has on accidents in schools, to come lip with a preventive plan. 906 high school sophomore students attending in Seoul were surveyed 1Tom November 12th to 23rd 2001. The results were following: 1. Students surveyed comprised of the following: Male 48.9%, Female 51.1% Public Schools 32.6%, Private Schools 67.4% Boys Schools 48.9%, Girls Schools 51.1% 2. In the past year, male students had more accidents(p〈.05) in school. 3. In examining students safety management control, 94.0% said that, there is an infirmary, there is a clear distinction between the playing fields and pathways(74.8%), and the chemicals in the labs are kept in a safe manner(77.2%). The above items were generally well maintained. However, the following recorded low scores. There are warning signs in hazardous places and facilities(30.5%), There is guiding principle to examine the safeness on a regular basis(24.9%), and There are slogans and posters preventing accidents(40.3%). 4. In examining the facilities of the schools that were surveyed, the majority answered, yes to the following. There are hazardous facilities or materials at school(62.9%), There are sharp edges in educational supplies and equipment(59.8%), There are nails or other components that are sticking out of desks and chairs(75.9%), There are slippery spots in the corridors and classrooms(69.3%), There are stones, scrap metal, broken glass, and trash on the playing fields(66.6%). Furthermore, the students surveyed said, yes to the following although in low percentages. The amount of sand on the playing fields is sufficient(49.1%), The soccer and basket goal posts are fastened (53.7%), There are safety bars on the windows of classrooms and corridors (27.4%), There are safety mats on the entrance to restrooms preventing slips (14.2%), The stairs have slip protection measures(49.1%). 5. In analyzing the affect that the school safety management system has on accidents in school, schools that had slogans and posters preventing accidents had a 50% less chance of accidents(p〈.05), schools with chemicals and equipment in the labs that were safely maintained had an 80% less probability of accidents(p〈.0l), and the schools that had sharp edges in the educational supplies and equipment had an 80% greater chance of accidents(p〈.01).

Combination Effects of Large Dam and Weirs on Downstream Habitat Structure: Case Study in the Tamjin River Basin, Korea (대형 댐과 농업용 보가 하류 서식처 특성에 미치는 영향 연구: 탐진강 유역을 대상으로)

  • Ock, Giyoung;Kang, Ji-Hyun;Park, Hyung-Geun;Kang, Dong-Won
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.638-646
    • /
    • 2018
  • The purpose of this study was to investigate the long-term habitat morphological alteration resulting from a large dam and weirs in the Tamjin River. To achieve this, we carried out a hydrograph analysis and a substrate size distribution analysis. We also estimated the channel width, bar area and vegetation encroachment using aerial photographs taken before and after the construction of the dam and weirs. The result of the hydrological analysis showed that flooding downstream was greatly reduced with small peaks occurrence after the dam construction. Interestingly, normal hydrographs in the main channel appeared just after tributary conjunction. There was a similar pattern in the substrate size analysis. Despite coarsened substrate just downstream of the dam site, more sand appeared again after introduction of the tributary. However, there was an increase in the bar area downstream of the dam's channels with most bars covered with vegetation. The channel width increased at the upper area of weirs through impoundment, but decreased downstream because of vegetation encroachment. This study indicate that unregulated tributary plays an important role in restoring hydro-physical habitat conditions in mainstream channels below a large dam. However, numerous weirs could be a causal factor to accelerate habitat deterioration in the dam downstream channels.

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.

Bathymetric and Topographic Changes of the Gomso-Bay Tidal Flat, West Coast of the Korean Peninsula (한반도 서해안 곰소만 갯벌의 수심 및 지형 변화)

  • Jin Ho Chang;Yong-Gil Kim;Myong Sun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.552-561
    • /
    • 2023
  • The seafloor topography of Gomso Bay on the west coast of Korea was investigated using subtidal bathymetry and tidal-flat altimetry. Gomso Bay consists of 80% tidal flats and 20% subtidal zone, and is divided into an outer bay and an inner bay by the Jujincheon esturary channel. The outer bay tidal flat, has few tidal channels, has a concave topographic profile, and is characterized by the development of chenier and intertidal sand bars, giving it the appearance of gently sloping, dissipative beaches. The inner bay tidal flat has wide upper and middle tidal flats with a well-developed tidal channel system without cheniers. Moreover, the topographical cross-section between these tidal channels is convex upward, and shows the characteristics of a depositional environment greatly influenced by tidal channels and tidal action. An analysis of the horizontal movement of the tidal flat environment over the past 37 years investigating changes in the iso-depth lines in the Gomso-Bay tidal flat between 1981 and 2018 revealed that the Gomso-Bay tidal flat retreated gradually landward. As a result of analyzing the erosion and sedimentation characteristics of Gomso Bay, assuming that most of the water depth changes were due to changes in the elevation of the sea floor and sea level, an average of 1 cm (0 mm/y) of sediment was eroded in the outer bay over the past 37 years (1981-2018), In the inner bay, an average of 50 cm (14 mm/y) was deposited. Notably, the high tidal flats of the outer bay were largely eroded. Monitoring photographs of the coast showed that most of the erosion of the high tidal flats in the outer bay occurred in a short period around 1999 (probably 1997-2002), and that the erosion resulted from the erosion of sand dunes and high-tide beaches caused by temporarily greatly raised high tide levels and storms.

The Distribution and Geomorphic Changes of Natural Lakes in East Coast Korea (한반도 동해안의 자연호 분포와 지형 환경 변화)

  • Lee, Min-Boo;Kim, Nam-Shin;Lee, Gwang-Ryul
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.4
    • /
    • pp.449-460
    • /
    • 2006
  • This study aims to analyze distribution of natural lakes including lagoonal lake(lagoon) and tributary dammed lake(tributary lake) and calculate the size, morphology in order to interpret time-serial change of lakes using methodology of remote sensing images(1990s), GIS and topographic maps(1920s) in east coast of Korean Peninsular. Analysis results show that in 1990s, there are 57 natural lakes, with the total size of $75.62km^2$ over size $0.01km^2$. marine-origin lagoons are 48 with total size of $64.85km^2$, composing 85% of total natural lake, and the largest lagoon is Beonpo in Raseon City. Tributary lakes have been formed by damming of tributary channels by fluvial sand bars from main stream, located nearby at coastal zone, similar to lagoon sites. Large tributary lake, Jangyeonho, is developed in lava plateau dissection valley of Eorang Gun, Hamnam Province. There are more distributed at Duman River mouth$\sim$Cheongjin City, Heungnam City$\sim$Hodo Peninsular and Anbyeon Gun$\sim$Gangreung City. Geomorphometrically, correlation of size to circumference is very high, but correlation of size to shape irregularity is very low. The direction of lagoonal coast, NW-SE and NE-SW are predominated due to direction of tectonic structure and longshore currents. The length of the river into lake are generally short, maximum under 15km, and lake size is smaller, degree of size decreasing is higher. Geomorphic patterns of the lake location are classified as coast-hill range, coastal plain, coastal plain-channel valley, coastal plain-hill range and channel valley-hill range. During from 1920s to 1990s, change with lake size decreasing is highest at coastal plain-channel valley, next is coastal plain. Causes of the size decreasing are fluvial deposition from upper rivers and human impacts such as reclamation.

  • PDF