• Title/Summary/Keyword: Sampling Method

Search Result 4,953, Processing Time 0.035 seconds

Probability Sampling to Select Polling Places in Exit Poll (출구조사를 위한 투표소 확률추출 방법)

  • Kim, Young-Won;Uhm, Yoon-Hee
    • Survey Research
    • /
    • v.6 no.2
    • /
    • pp.1-32
    • /
    • 2005
  • The accuracy of exit poll mainly depends on the sampling method of voting places. For exit poll, we propose a probability sampling method of selecting voting places as an alternative to the bellwether polling place sampling. Through an empirical study based on the 2004 general election data, the efficiency of the suggested systematic sampling from ordered voting places was evaluated in terms of mean prediction error and it turns out that the proposed sampling method outperformed the bellwether polling places sampling. We also calculated the variance of estimator from the proposed sampling, and considered the sample size problem to guarantee the target precision using the design effect of the proposed sample design.

  • PDF

Study on Sampling Techniques for Digital Elevation Model (수치표고모형에 있어서 표고추출법의 연구)

  • Kang, In-Joon;Jung, Jae-Hyung;Kwak, Jae-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.10 no.2
    • /
    • pp.49-55
    • /
    • 1992
  • Sampling techniques is very important in digital elevation model. There are scanning and digitizing method of sampling techniques. This study is limited in digitizing method. Continous sampling method use contour lines as same entity and grid method is a direct reading of sample elevation in each grid. Triangulated irregular method is needed to identity topographical lines to sample elevation data. As a results, authors know that continous sampling method has economic in input system and triangulated irregular method has a small memory size.

  • PDF

Reliability Analysis Using Dimension Reduction Method with Variable Sampling Points (가변적인 샘플링을 이용한 차원 감소법에 의한 신뢰도 해석 기법)

  • Yook, Sun-Min;Min, Jun-Hong;Kim, Dong-Ho;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.870-877
    • /
    • 2009
  • This study provides how the Dimension Reduction (DR) method as an efficient technique for reliability analysis can acquire its increased efficiency when it is applied to highly nonlinear problems. In the highly nonlinear engineering systems, 4N+1 (N: number of random variables) sampling is generally recognized to be appropriate. However, there exists uncertainty concerning the standard for judgment of non-linearity of the system as well as possibility of diverse degrees of non-linearity according to each of the random variables. In this regard, this study judged the linearity individually on each random variable after 2N+1 sampling. If high non-linearity appeared, 2 additional sampling was administered on each random variable to apply the DR method. The applications of the proposed sampling to the examples produced the constant results with increased efficiency.

Reliability Analysis Method with Variable Sampling Points (가변적인 샘플링을 이용한 신뢰도 해석 기법)

  • Yook, Sun-Min;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1162-1168
    • /
    • 2008
  • This study provides how the Dimension Reduction (DR) method as an efficient technique for reliability analysis can acquire its increased efficiency when it is applied to highly nonlinear problems. In the highly nonlinear engineering systems, 4N+1 (N: number of random variables) sampling is generally recognized to be appropriate. However, there exists uncertainty concerning the standard for judgment of non-linearity of the system as well as possibility of diverse degrees of non-linearity according to each of the random variables. In this regard, this study judged the linearity individually on each random variable after 2N+1 sampling. If high non-linearity appeared, 2 additional sampling was administered on each random variable to apply the DR method. The applications of the proposed sampling to the examples produced the constant results with increased efficiency.

  • PDF

Sequential sampling method for monitoring potato tuber moths (Phthorimaea operculella) in potato fields

  • Jung, Jae-Min;Byeon, Dae-hyeon;Kim, Eunji;Byun, Hye-Min;Park, Jaekook;Kim, Jihoon;Bae, Jongmin;Kim, Kyutae;Roca-Cusachs, Marcos;Kang, Minjoon;Choi, Subin;Oh, Sumin;Jung, Sunghoon;Lee, Wang-Hee
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.615-624
    • /
    • 2020
  • An effective sampling method is necessary to monitor potato tuber moths (Phthorimaea operculella) because they are the biggest concern in potato-cultivating areas. In this study, a sequential sampling method was developed based on the results of field surveys of potato tuber moths in South Korea. Potato tuber moths were collected in fields cultivating potatoes at six sites, and their spatial distribution was investigated using the Taylor power law. The optimal sampling size and cumulative number of potato tuber moths in traps to stop sampling were determined based on the spatial distribution pattern and mean density of the collected potato tuber moths. Finally, the developed sampling method was applied to propose a control action, and its sampling efficiency was compared with that of the traditional sampling method using a binomial distribution. The potato tuber moths tended to aggregate; the optimal number was approximately 5 - 16 traps for sampling, and the number varied with the mean density of potato tuber moths according to the sampling sites. In addition, one, two, and three sites might require the following actions: Continued sampling, control, and no control, respectively. Sampling with the binomial distribution showed the minimum sample size was 12 when considering the economic threshold level. Here, we propose an effective sampling method that can be applied for future monitoring and field surveys of potato tuber moths in South Korea.

A Complex Bandpass Sampling Method for Downconversion of Multiple Bandpass Signals (다중 대역통과 신호의 하향변환을 위한 Complex Bandpass Sampling 기법)

  • Bae, Jung-Hwa;Ha, Won;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.913-921
    • /
    • 2005
  • A complex bandpass sampling technique can provide a more flexible architecture for designing a software- defined radio(SDR) system, because it has several advantageous features of larger sampling range and lower minimum sampling frequency than a real bandpass sampling method. In spite of the potential advantages of the complex bandpass sampling, solid investigation for the direct downconversion of multiple signals by the complex sampling theory has not been reported yet. Thus, we propose in this paper a novel scheme for the downconversion of multiple signals using the complex bandpass sampling, and develop the formulae related to the complex bandpass sampling for practical usage, such as the valid sampling range, the intermediate frequency (If), and the minimum sampling frequency of the downconversion of multiple RE signals. Such derived formulae are verified from simulations.

Reliability-Based Design Optimization Using Kriging Metamodel with Sequential Sampling Technique (순차적 샘플링과 크리깅 메타모델을 이용한 신뢰도 기반 최적설계)

  • Choi, Kyu-Seon;Lee, Gab-Seong;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1464-1470
    • /
    • 2009
  • RBDO approach based on a sampling method with the Kriging metamodel and Constraint Boundary Sampling (CBS), which is sequential sampling method to generate metamodels is proposed. The major advantage of the proposed RBDO approach is that it does not require Most Probable failure Point (MPP) which is essential for First-Order Reliability Method (FORM)-based RBDO approach. The Monte Carlo Sampling (MCS), most well-known method of the sampling methods for the reliability analysis is used to assess the reliability of constraints. In addition, a Cumulative Distribution Function (CDF) of the constraints is approximated using Moving Least Square (MLS) method from empirical distribution function. It is possible to acquire a probability of failure and its analytic sensitivities by using an approximate function of the CDF for the constraints. Moreover, a concept of inactive design is adapted to improve a numerical efficiency of the proposed approach. Computational accuracy and efficiency of the proposed RBDO approach are demonstrated by numerical and engineering problems.

Reliability Analysis for Structure Design of Automatic Ocean Salt Collector Using Sampling Method of Monte Carlo Simulation

  • Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.316-324
    • /
    • 2020
  • This paper presents comparative studies of reliability analysis and meta-modeling using the sampling method of Monte Carlo simulation for the structure design of an automatic ocean salt collector (AOSC). The thickness sizing variables of structure members are considered as random variables. Probabilistic performance functions are selected from strength performances evaluated via the finite element analysis of an AOSC. The sampling methods used in the comparative studies are simple random sampling and Sobol sequences with varied numbers of sampling. Approximation methods such as the Kriging model is applied to the meta-model generation. Reliability performances such as the probability failure and distribution are compared based on the variation of the sampling method of Monte Carlo simulation. The meta-modeling accuracy is evaluated for the Kriging model generated from the Monte Carlo simulation and Sobol sequence results. It is discovered that the Sobol sequence method is applicable to not only to the reliability analysis for the structural design of marine equipment such as the AOSC, but also to Kriging meta-modeling owing to its high numerical efficiency.

A Study on Determining Job Sequence by Sampling Method (II) (샘플링 기법에 의한 작업순서의 결정 (II))

  • 강성수;노인규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.12 no.19
    • /
    • pp.25-30
    • /
    • 1989
  • This study is concerned with a job sequencing method using the concept of sampling technique. This sampling technique has never been applied to develop the scheduling algorithms. The most job sequencing algorithms have been developed to determine the best or good solution under the special conditions. Thus, it is not only very difficult, but also taken too much time to develop the appropriate job schedules that satisfy the complex work conditions. The application areas of these algorithms are also very narrow. Under these circumstances it is very desirable to develop a simple job sequencing method which can produce the good solution with the short tine period under any complex work conditions. It is called a sampling job sequencing method in this study. This study is to examine the selection of the good job sequence of 1%-5% upper group by the sampling method. The result shows that there is the set of 0.5%-5% job sequence group which has to same amount of performance measure with the optimal job sequence in the case of experiment of 2/n/F/F max. This indicates that the sampling job sequencing method is a useful job sequencing method to find the optimal or good job sequence with a little effort and time consuming. The results of ANOVA show that the two factors, number of jobs and the range of processing time are the significant factors for determining the job sequence at $\alpha$=0.01. This study is extended to 3 machines to machines job shop problems further.

  • PDF