• Title/Summary/Keyword: Sample matrix

Search Result 696, Processing Time 0.034 seconds

Likelihood Ratio Criterion for Testing Sphericity from a Multivariate Normal Sample with 2-step Monotone Missing Data Pattern

  • Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.473-481
    • /
    • 2005
  • The testing problem for sphericity structure of the covariance matrix in a multivariate normal distribution is introduced when there is a sample with 2-step monotone missing data pattern. The maximum likelihood method is described to estimate the parameters on the basis of the sample. Using these estimates, the likelihood ratio criterion for testing sphericity is derived.

Multivariate control charts for monitoring correlation coefficients in dispersion matrix

  • Chang, Duk-Joon;Heo, Sun-Yeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.1037-1044
    • /
    • 2012
  • Multivariate control charts for effectively monitoring every component in the dispersion matrix of multivariate normal process are considered. Through the numerical results, we noticed that the multivariate control charts based on sample statistic $V_i$ by Hotelling or $W_i$ by Alt do not work effectively when the correlation coefficient components in dispersion matrix are increased. We propose a combined procedure monitoring every component of dispersion matrix, which operates simultaneously both control charts, a chart controlling variance components and a chart controlling correlation coefficients. Our numerical results show that the proposed combined procedure is efficient for detecting changes in both variances and correlation coefficients of dispersion matrix.

Tertiary Matrices for the Analysis of Polyethylene Glycols Using MALDI-TOF MS

  • Hong, Jangmi;Kim, Taehee;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.49-51
    • /
    • 2014
  • The effectiveness of tertiary matrices composed of the combination of three common matrices (dihydrobenzoic acid (DHB), ${\alpha}$-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA)) was compared with that of single or binary matrices in the analysis of polyethylene glycol (PEG) polymers ranging from 1400 to 10000 Da using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A tertiary matrix of 2,5-DHB+CHCA+SA was the most effective in terms of S/N ratios. CHCA and CHCA+SA produced the highest S/N ratios among the single matrices and the binary matrices, respectively. The improvement observed when using a tertiary matrix in analyses of PEG polymers by MALDI-TOF MS is believed to be due to the uniform morphology of the MALDI sample spots and synergistic effects arising from the mixture of the three matrix materials.

Tensile Failure Characterization of Composites for Railway Vehicle (철도차량 복합소재의 인장파괴 특성분석)

  • Kim, Jeong-Guk;Kwon, Sung-Tae;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1231-1235
    • /
    • 2010
  • The tensile failure behavior of polymer matrix composite materials was investigated with the aid of a nondestructive evaluation (NDE) technique. The materials, E-glass fiber reinforced epoxy matrix composites, which are applicable to carbody materials in railway vehicles to reduce weight, were used for this investigation. In order to explain stress-strain behavior of polymer matrix composite sample, the infrared thermography technique was employed. A high-speed infrared (IR) camera was used for in-situ monitoring of progressive damages of polymer matrix composite samples during tensile testing. In this investigation, the IR thermography technique was used to facilitate a better understanding of damage evolution, fracture mechanism, and failure mode of polymer matrix composite materials during monotonic loadings.

  • PDF

Topological Observability Analysis Using Incidence Matrix in Power Systems (접속행열을 이용한 전력계통 입상학적 가관측성 해석)

  • Seog-Joo Kim;Young-Hyun Moon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.11
    • /
    • pp.769-776
    • /
    • 1987
  • This paper deals with the topological observability analysis and the development of an observable island identification algorithm for state estimation in power systems, by using the incidence matrix and bus voltage grouping. An analogy of the DC power flow method to the DC circuit analysis is introduced, and all the relationships between power flows and phase angles are replaced by the corresponding current-voltage relation. As a result, a set of topological measurement equation expressed in the form of the incidince matrix is derived for the topological analysis, and the observability test is carried out by examining the rand of the measuremint matrix. The integer Gauss elimination method is introduced in the determination of matrix rand, so that the proposed observability test yields a precise observability criterion without any nearly-zero pivot problem encountered in the conventional algorithm. Also, an observable island identification algorithm reduced its computational time in comparision with the conventional algorithms. The proposed algorithms have been tested for sample systems, and their practicability has verified.

Thermal Fatigue Behavior of 3D-Woven SiC/SiC Composite with Porous Matrix for Transpiration Cooling Passages

  • Hayashi, Toshimitsu;Wakayama, Shuichi
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.61-75
    • /
    • 2009
  • The effect of porous matrix on thermal fatigue behavior of 3D-orthogonally woven SiC/SiC composite was evaluated in comparison with that having relatively dense matrix. The porous matrix yields open air passages through its thickness which can be utilized for transpiration cooling. On the other hand, the latter matrix is so dense that the air passages are sealed. A quantity of the matrix was varied by changing the number of repetition cycles of the polymer impregnation pyrolysis (PIP). Strength degradation of composites under thermal cycling conditions was evaluated by the $1200^{\circ}C$/RT thermal cycles with a combination of burner heating and air cooling for 200 cycles. It was found that the SiC/SiC composite with the porous matrix revealed little degradation in strength during the thermal cycles, while the other sample showed a 25% decrease in strength. Finally it was demonstrated that the porous structure in 3D-SiC/SiC composite improved the thermal fatigue durability.

Effect of Bias on the Pearson Chi-squared Test for Two Population Homogeneity Test

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.241-245
    • /
    • 2012
  • Categorical data collected based on complex sample design is not proper for the standard Pearson multinomial-based chi-squared test because the observations are not independent and identically distributed. This study investigates effects of bias of point estimator of population proportion and its variance estimator to the standard Pearson chi-squared test statistics when the sample is collected based on complex sampling scheme. This study examines the effect under two population homogeneity test. The standard Pearson test statistic can be partitioned into two parts; the first part is the weighted sum of ${\chi}^2_1$ with eigenvalues of design matrix as their weights, and the additional second part which is added due to the biases of the point estimator and its variance estimator. Our empirical analysis shows that even though the bias of point estimator is small, Pearson test statistic is very much inflated due to underestimate the variance of point estimator. In the connection of design-based variance estimator and its design matrix, the bigger the average of eigenvalues of design matrix is, the larger relative size of which the first component part to Pearson test statistic is taking.

Development of a Matrix-prespotted Plate for Enhancing the Reproducibility of Serum Glycan Analysis by MALDI-TOF-MS

  • Ha, Mi-Young;In, Young-Ha;Maeng, Hye-Sun;Zee, Ok-Pyo;Lee, Jong-Sik;Kim, Yang-Sun
    • Mass Spectrometry Letters
    • /
    • v.2 no.3
    • /
    • pp.61-64
    • /
    • 2011
  • Matrix Assisted Laser Desorption/Ionization-Time-of-Flight mass spectrometry (MALDI-TOF-MS) is the most widely used MS technique for glycan analysis. However, the poor point-to-point and sample-to-sample reproducibility becomes a limit in glycan biomarker research. A prespotted MALDI plate which overcomes the large crystal formation of 2,5-dihydroxybenzoic acid (DHB) has been developed and applied for glycan analysis. A homogeneous matrix coated surface without a crystal structure was formed on a hydrophilic/ hydrophobic patterned surface using a piezoelectric device. The reproducible MALDI-TOF-MS data have been presented using MALDI imaging of beer glycan as well as serum glycan eluted from 10% and 20% ACN elution fractions. The glycan profile from the serum glycan by MALDI-TOF-MS with a DHB prespotted plate was highly conserved for 10 different spectra and the coefficient of variations of significant ion peaks of MALDI data varies from 3.59 to 19.95.

Analytic study on lead and cadmium in copper contained carbon materials (구리를 함유한 탄소소재의 납 및 카드뮴 분석에 관한 연구)

  • Choi, Zel-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.307-313
    • /
    • 2010
  • Quantitative analytical condition for lead and cadmium in copper contained carbon materials using solvent extraction followed by inductively coupled plasma-atomic emission spectrometry was studied. Copper contained carbon samples were dissolved by nitric acid-perchloric acid digestion. Lead and cadmium were determined after separation with KCN masked copper by an dithizone-chloroform solvent extraction. Recovery efficiency of analyte elements was satisfactory, and most of matrix elements causing interference could be effectively eliminated by the separation. Lead and cadmium were quantitatively determined without influence of sample matrix, by applying it procedure to artifact sample.

Effect of ε-carbide (Fe2.4C) on Corrosion and Hydrogen Diffusion Behaviors of Automotive Ultrahigh-Strength Steel Sheet (초고강도급 자동차용 강재 내 ε-carbide (Fe2.4C)가 부식 및 수소확산거동에 미치는 영향)

  • Park, Jin-seong;Yun, Duck Bin;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.295-307
    • /
    • 2021
  • Effects of ε-carbide (Fe2.4C) on corrosion and hydrogen diffusion behaviors of ultra-strong steel sheets for automotive application were investigated using a number of experimental and analytical methods. Results of this study showed that the type of iron carbide precipitated during tempering treatments conducted at below A1 temperatures had a significant influence on corrosion kinetics. Compared to a steel sample with cementite (Fe3C), a steel sample with ε-carbide (Fe2.4C) showed higher corrosion resistance during a long-term exposure to a neutral aqueous solution. In addition, the diffusion kinetics of hydrogen atoms formed by electrochemical corrosion reactions in the steel matrix with ε-carbide were slower than the steel matrix with cementite because of a comparatively higher binding energy of hydrogen with ε-carbide. These results suggest that designing steels with fine ε-carbide distributed uniformly throughout the matrix can be an effective technical strategy to ensure high resistance to hydrogen embrittlement induced by aqueous corrosion.